Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Колебательные контуры и их частотные характеристики

Тип Реферат
Предмет Промышленность и производство
Просмотров
971
Размер файла
31 б
Поделиться

Ознакомительный фрагмент работы:

Колебательные контуры и их частотные характеристики

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

Воронежский государственный технический университет

Кафедра «Системы информационной безопасности»

Реферат

по дисциплине «Электроника и схемотехника»

на тему «Колебательные контуры и их частотные характеристики »

Выполнил:

Пономарёв К.В.

Проверила:

Доц. Воробьева Е.И

Воронеж 2009

Определение.

Колебательный контур — электрическая цепь, содержащая последовательно соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).

Колебательный контур - простейшая система, в которой могут происходить свободные электромагнитные колебания

Принцип действия

Пусть конденсатор ёмкостью C заряжен до напряжения U0. Энергия, запасённая в конденсаторе составляет

При соединении конденсатора с катушкой индуктивности ,в цепи потечёт ток I, что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия колебательного контура EC = 0. Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна

где L — индуктивность катушки, I0 — максимальное значение тока.

После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения − U0.

В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.

В общем, описанные выше процесы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность и ёмкость протекают токи, больше тока проходящего через весь контур, причем эти токи больше в определённое число раз, которое называется добротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличии от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.

Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.

Математическое описание процессов

Напряжение, возникающее в катушке при изменении протекающего тока равно

Аналогично для тока, вызванного изменением напряжения на конденсаторе:

Поскольку всё возникающее в катушке напряжение падает на конденсаторе, то uL = uC, а ток, вызванный конденсатором проходит через катушку, то iC = iL. Дифференцируя одно из уравнений и подставляя результат в другое, получаем

Это уравнение гармонического осциллятора с круговой частотой (иначе она называется собственной частотой гармонического осциллятора) Решением такого уравнения является

где Ia — некая постоянная, называемая амплитудой колебаний, — также некоторая постоянная, называемая начальной фазой. И, например, при начальных условиях i = 0 решение сведётся к

Решение может быть записано также в виде

где Ia1 и Ia2 - некоторые константы, которые связаны с амплитудой Ia и фазой следующими отношениями

Комплексное сопротивление (импеданс) колебательного контура

Колебательный контур может быть рассмотрен как двуполюсник. Колебательный контур может быть рассмотрен как параллельное включение двух комплексных сопротивлений ёмкости и индуктивности. Комплексное сопротивление такого двуполюсника можно записать как

где i - мнимая единица. Для такого двухполюсника может быть определена т.н. характеристическая частота (она же резонансная частота), когда импеданс колебательного контура стремится к бесконечности (знаменатель дроби стремится к нулю). Эта частота равна

и совпадает по значению с собственной частотой колебательного контура.

Из этого уравнения следует, что на одной и той же частоте может работать множество контуров с разными величинами L и C, но с одинаковым произведением LC.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
154470
рейтинг
icon
3200
работ сдано
icon
1385
отзывов
avatar
Математика
Физика
История
icon
150697
рейтинг
icon
5998
работ сдано
icon
2715
отзывов
avatar
Химия
Экономика
Биология
icon
105824
рейтинг
icon
2100
работ сдано
icon
1312
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
59 986 оценок star star star star star
среднее 4.9 из 5
ПНИПУ
Большое спасибо за проделанную работу. Работа была выполненная качественно, а также раньше...
star star star star star
Синергия
Спасибо большое, все замечательно и качественно, очень актива )))) 5 звёзд
star star star star star
Государственный университет просвещения
Валентина большая молодец! Работу выполнила досрочно! Получился отличный реферат! Очень ве...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

3 задачи

Решение задач, Проектирование Мостов

Срок сдачи к 20 апр.

только что

Тема курсовой: Разработка системы мониторинга защищённости сервера...

Курсовая, информационная безопасность

Срок сдачи к 17 апр.

только что
1 минуту назад
1 минуту назад

Практическое задание

Реферат, Теория и методика физической культуры

Срок сдачи к 30 апр.

9 минут назад

Основы социологии и политологии

Контрольная, Политология

Срок сдачи к 16 апр.

10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени: 15 апреля 2025 г. 03:53

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Press the down arrow key to interact with the calendar and select a date. Press the question mark key to get the keyboard shortcuts for changing dates.

Файлы (при наличии)

    это быстро и бесплатно