Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Расчет параметров цифровых систем передачи непрерывных сообщений 2

Тип Реферат
Предмет Коммуникации и связь
Просмотров
1476
Размер файла
433 б
Поделиться

Ознакомительный фрагмент работы:

Расчет параметров цифровых систем передачи непрерывных сообщений 2

Министерство связи и массовых коммуникаций РФ

Федеральное агентство связи

ГОУ ВПО «Сибирский государственный университет телекоммуникаций и информатики»

Уральский технический институт связи и информатики (филиал)

Факультет телекоммуникаций

КУРСОВОЙ ПРОЕКТ

Расчет параметров цифровых систем передачи непрерывных сообщений

Выполнила:

студентка гр.МЕ-81с

Чибышева М.П.

Преподаватель:

Астрецов Д.В.

Екатеринбург,2009

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

для курсового проектирования

по предмету: Теория электрической связи

на тему: «Расчет параметров цифровых систем передачи

непрерывных сообщений»

студентки 4 курса МЕ-81с группы

Чибышевой Марии Петровны

ИСХОДНЫЕ ДАННЫЕ

Вариант 08

Вид модуляции – ОФМ

K=5

f0=1600 Гц

δ=0,1%

Закон распределения - 4


СОДЕРЖАНИЕ

Введение 4

1 Распределение относительной среднеквадратичной ошибки 5

2 Расчет частоты дискретизации 6

3 Расчет пикфактора 8

4Расчет числа разрядов двоичного кода 9

5 Расчет допустимой вероятности ошибки, вызванной действием

помех 10

6 Расчет энтропии источника сообщений 11

7 Расчет избыточности и информационной насыщенности

сообщения 12

8 Расчет производительности источника и пропускной способности канала связи 13

9 Выбор сложного сигнала для передачи информации и

синхронизации 14

Заключение 21

Список литературы 23

Приложение А. Структурная схема системы передачи непрерывных сообщений в цифровой форме 24


ВВЕДЕНИЕ

В настоящее время широкое применение находят цифровые системы передачи (ЦСП), в которых непрерывные сообщения передаются дискретными сигналами. Преобразование непрерывного сообщения в цифровую форму осуществляется путем операций дискретизации и квантования. Дискретизация по времени выполняется путем взятия отчетов первичного сигнала b(t) в определенные дискретные моменты t. В результате непрерывную функцию b(t) заменяют совокупностью значений (отсчетов) {b(k) или {b(tк)}. Обычно моменты отсчетов выбираются на оси времени равномерно т.е. {tк = k∆}, где ∆ - шаг дискретизации.

Операция квантования сводится к тому, что вместо данного мгновенного значения (уровня) передаваемого сообщения b(tк) передают ближайшие значения по установленной цифровой шкале дискретных уровней bкв(t). Дискретные значения по шкале уровней чаще всего выбираются равными:

{bкв(ℓ) = ℓ∆b}, где ∆b- шаг квантования, ℓ = 0,1,…,L-1. Само собой разумеется, что при квантовании вносится погрешность, т.к. истинное значение b(tк) заменяют округленным значением bкв(tк). Величина этой погрешности ξ = b(tк) - bкв(tк) не превосходит половины шага квантования ∆b и может быть сведена до допустимого уровня. Погрешность ξ является случайной функцией и проявляется на выходе как дополнительный шум (шум квантования), наложенный на передаваемое сообщение. Дискретизация по времени позволяет преобразовать непрерывные сообщения в дискретный (во времени) сигнал, который после квантования превращается в цифровой. Достоинством цифровых способов передачи является возможность применения кодов как для сокращения избыточности источника. В настоящее время наибольшее применение находит система с импульсно–кодовой модуляцией (ИКМ). В этой системе непрерывное сообщение сигнала подвергается дискретизации по времени и квантованию по уровню, а затем полученная последовательность L уровней (цифр) кодируется (обычно двоичным кодом). При этом каждому уровню присваивается кодовая комбинация, состоящая из n символов “ 1” и “0”. Полученная последовательность двоичных символов передается по каналу связи одним из методов дискретной модуляции. Обычно используется частотная (ИКМ - ЧМ) или фазовая (ИКМ - ФМ) модуляция.

Целью данной курсовой работы является закрепление навыков анализа системы передачи непрерывных сообщений цифровыми методами, расчёта характеристик помехоустойчивости и других показателей качества передачи информации по каналам связи с помехами, а также отработка навыков изложения результатов технических расчётов, составление и оформление технической документации.


1 РАСПРЕДЕЛЕНИЕ ОТНОСИТЕЛЬНОЙ СРЕДНЕКВАДРАТИЧНОЙ ОШИБКИ

Распределение среднеквадратичной ошибки входных преобразований делиться на четыре составляющих: ОСКО, вызванной ограничением максимальных отклонений сообщений от среднего значения δ2, ОСКО, вызванной временной дискретизацией сообщения δ1, ОСКО квантования исходного непрерывного процесса δ3 и ОСКО искажений сообщения, вызванных действием помех δ4. Тогда эффективное значение относительной ошибки входных преобразований может быть найдено по формуле (1.1):

δ = (1.1)

При заданном значении δ возможно много вариантов подбора значений слагаемых в формуле (1.1). Распределение Лапласа не является равномерным, следовательно, оно и неограниченно. Все 4 ошибки присутствуют и являются независимыми и случайными, из чего следует их равноценность:

δ1234=1/2δ (1.2)

δ = 0,1% = 0,001

δ1234=1/2*0,001=0,0005


2 РАСЧЕТ ЧАСТОТЫ ДИСКРЕТИЗАЦИИ

По результатам распределения ОСКО рассчитывается частота дискретизации (Fд).

По теореме Котельникова имеем:

Fд=2Fв (2.1)

Эффективное значение относительной ошибки временной дискретизации сообщения x(t) определяется равенством:

δ1= (2.2)

Где Fд – частота дискретизации;

Sx(f) – спектральная плотность мощности сообщения x(t);

S1 – площадь всей фигуры (Рисунок 2.1);

S2 – площадь заштрихованной части (Рисунок 2.1).

Sx(f)

Sx(0)

0

f0Fвf

Рисунок 2.1 – Спектральная плотность сигнала

В задании на проектирование форма спектральной плотности мощности сообщения определена равенством

Sx(f)= (2.3)

Где S0 – спектральная плотность мощности сообщения на нулевой частоте;

k – параметр, характеризующий порядок фильтра, формирующего сообщение;


f0 – частота, определяющая ширину спектра сообщения по критерию снижения Sx(f) в два раза по сравнению с её значением на нулевой частоте Sx(0).

(2.4)

где

(2.5)

(2.6)

(2.7)

Пользуясь формулой (2.7) можно вычислить частоту временной дискретизации Fд:

Fд = (2.8)

Fд =


3 РАСЧЕТ ПИКФАКТОРА

Отношение H максимального пикового значения непрерывного сообщения к его эффективному значению называется пикфактором.

(3.1)

На рисунке 1 изображен заданный закон распределения.

Рисунок 3.1 – Закон распределения

Для данного распределения:

(3.2)

(3.3)


4 РАСЧЕТ ЧИСЛА РАЗРЯДОВ ДВОИЧНОГО КОДА

Связь эффективного значения относительной ошибки квантования δ3 с числом разрядов Npдвоичного кода при достаточно высоком числе уровней квантования, когда ошибку можно считать распределенной по закону равномерной плотности, определяется выражением:

δ3 (4.1)

Таким образом, задавшись допустимым значением относительной ошибки δ3, можно найти число разрядов двоичного кода, обеспечивающее заданную точность преобразования:

Np= (4.2)

Где E(x) – целая часть дробного числа x.

Np=+1=13 (4.3)


5 РАСЧЕТ ДОПУСТИМОЙ ВЕРОЯТНОСТИ ОШИБКИ, ВЫЗВАННОЙ ДЕЙСТВИЕМ ПОМЕХ

Оптимальный приёмник вычисляет апостериорную плотность распределения вероятности и выдаёт то значение сообщения, при котором апостериорная плотность максимальна.

Эффективное значение среднеквадратичной ошибки воспроизведения сообщения, вызванной ошибочным приемом одного из символов двоичного кода за счет широкополосного шума, можно найти по формуле:

(5.1)

где Рош – вероятность ошибки приема разрядного символа.

Приведенная формула справедлива при небольших значениях .

Из формулы (5.1) выразим допустимую вероятность ошибки:

(5.2)

Выражаем из формулы (5.2) :

(5.3)

Найдем требуемое значение отношения , обеспечивающее требуемое качество.

(5.4)

(5.5)


6 РАСЧЕТ ЭНТРОПИИ ИСТОЧНИКА СООБЩЕНИЙ

Энтропия источника сообщения – это его информационная характеристика.

Для расчёта энтропии целесообразнее всего воспользоваться приближённой формулой, которая является достаточно точной при большом числе уровней квантования:

(6.1)

где W(x) – плотность вероятности сообщения;

h – значение интервала квантования;

Um – порог ограничения сообщения.

(6.2)

Для четвертого распределения энтропия выражается следующей формулой:

H(x) = (6.3)

H(x) = 13 - 0,5 + =12,5 - 1 = 11,5 бит/симв


7 РАСЧЕТ ИЗБЫТОЧНОСТИ И ИНФОРМАЦИОННОЙ НАСЫЩЕННОСТИ СООБЩЕНИЙ

Для оценки избыточности сначала рассчитаю информационную насыщенность сообщения:

Iн(x)= (7.1)

где Hмакс – максимальная энтропия источника, достигаемая при равномерном распределении.

Тогда избыточность может быть найдена и выражена

R(x) = 1 – Iн(x) = 1 - 0,885 = 0,115 (7.2)


8 РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ ИСТОЧНИКА

И ПРОПУСКНОЙ СПОСОБНОСТИ КАНАЛА СВЯЗИ

Производительность источника сообщения находиться из равенства:

I`(x) = 2f0∙H(x) = 2 1600 11, 5 = 36800 бит/(симв·с) (8.1)

Пропускная способность канала связи определяется формулой Шеннона, которая означает условия согласования канала связи с источником сообщения

C = I`(x) = 36800 бит/с (8.2)

Сравнивая пропускную способность (8.2) с производительностью источника (8.1), можно найти значение отношения мощности сигнала и помехи, требуемое для согласования источника сообщения с каналом связи:

(8.3)

(8.4)

Следовательно:

(8.5)

Следует иметь в виду, что в данном случае речь идёт о мощности шума в полосе частот, равной половине частоты дискретизации сообщения, и что при этом информация передаётся без искажений.


9 ВЫБОР СЛОЖНОГО СИГНАЛА ДЛЯ ПЕРЕДАЧИ ИНФОРМАЦИИ И СИНХРОНИЗАЦИИ

Применение сложных сигналов не может дать выигрыша в помехоустойчивости при помехе в виде широкополосного шума и сигнале, известном точно. Однако применение сложных сигналов позволяет получить ряд других преимуществ:

1) Сложные сигналы обладают повышенной помехоустойчивостью по отношению к помехам с сосредоточенным спектром (узкополосным помехам);

2) Сложные сигналы обладают повышенной разрешающей способностью, которая позволяет разделить сигналы при многолучевом распространении;

3) Использование сложного сигнала позволяет обеспечить синхронизацию устройства восстановления аналогового сообщения по принятому цифровому сигналу.

Необходимо выбрать два вида используемых сигналов с ФКМ – фазокодовой манипуляцией (это последовательность импульсов, у которых фаза меняется на p по специальному коду). Один сигнал должен быть использован для синхронизации, второй – для передачи информационных символов.

Существует два типа кода:

· код Баркера;

· М–последовательность.

Я выбираю для передачи информационной последовательности и для импульсов синхронизации М–последовательность.

k-ый элемент последовательности рассчитывается по формуле:

(9.1)

где С и d – двоичные числа.

Составим М-последовательность для синхроэлемента. Для этого зададим первые четыре импульса:

Рассчитаем остальные элементы для передачи информационных символов:

(9.2)

где k больше либо равно пяти.

Рассчитаем число элементов в каждой последовательности по формуле:

(9.3)

Таким образом, я получила М-последовательность для передачи информационных символов: 100011110101100.

Рассчитаем элементы для передачи синхросигнала:

(9.4)

М-последовательность для передачи синхросигнала: 100010011010111.

Далее построим функцию корреляции для информационных импульсов и синхросигнала, предварительно пропустив М-последовательность через схему согласованного фильтра.

Рисунок 9.1 – Схема согласования фильтров для информационных импульсов

Рисунок 9.2 - Схема согласования фильтров для синхроимпульсов


Таблица 9.1 – Вычисление значений сигнала на выходе согласованного фильтра (фильтр информационный, сигнал информационный)

001101011110001
001101011110001
Х11001010000111
Х1100101000011
Х110010100001
00110101111
0011010111
001101011
00110101
Х1100101
001101
Х11001
0011
001
Х11
0
0032-3-2-3212-3-4-1113

Рисунок 9.3 - Функция корреляции


Таблица 9.2 – Вычисление значений сигнала на выходе согласованного фильтра (фильтр информационный, синхросигнал)

111010110010001
111010110010001
Х00010100110111
Х0001010011011
Х000101001101
11101011001
1110101100
111010110
11101011
Х0001010
111010
Х00010
1110
111
Х00
1
10-1-41052-1-214-141

Рисунок 9.4 - Функция корреляции


Таблица 9. 3– Вычисление значений сигнала на выходе согласованного фильтра (фильтр синхронный, синхросигнал)

111010110010001
111010110010001
Х00010100110111
Х0001010011011
Х000101001101
11101011001
X0001010011
X000101001
11101011
1110101
X000101
11101
X0001
111
11
1
10-1-41-21-21-230-1-215

Рисунок 9.5 - Функция корреляции


Таблица 9.4 – Вычисление значений сигнала на выходе согласованного фильтра (фильтр синхронный, сигнал информационный)

001101011110001
001101011110001
Х00110101111000
Х0011010111100
Х001101011110
00110101111
X0011010111
X001101011
00110101
0011010
X001101
00110
X0011
001
00
0
-1032-3012-52-1-4-1-2-1

Рисунок 9.6 - Функция корреляции


ЗАКЛЮЧЕНИЕ

В результате курсовой работы я закрепила навыки по анализу систем передачи непрерывных сообщений цифровыми методами, по расчету характеристик помехоустойчивости и других показателей качества передачи информации по каналу связи с помехами. Была разработана структурная схема системы передачи непрерывного сообщения в цифровой форме.

Сведем основные результаты расчетов в таблицу.

ВЕЛИЧИНАЗНАЧЕНИЕ
1. Эффективные значения относительных среднеквадратичных ошибок этапов входных преобразований и ошибки, вызванной действием помех0,0005
2. Значение частоты дискретизации Fд13600 Гц
3. Значение пикфактора Н5,4
4. Число разрядов двоичного кода Np13
5.Энтропия источника сообщений Н(x)11,5
6. Требуемое отношение при оптимальном когерентном приеме37
7. Требуемое отношение при оптимальном некогерентном приеме36,5
8. Требуемое значение отношения сигнал/шум для обеспечения пропускной способности канала связи8,4

В заключение курсовой работы хотелось бы сказать об эффективности систем связи и о методах их повышения: под эффективностью понимают некоторую функцию показателей качества, которая характеризует систему связи с технической точки зрения. На начальном этапе проектирования во внимание принимаются лишь основные показатели качества. К ним, прежде всего, относится достоверность и скорость передачи сообщений (верхняя частота при непрерывных сообщениях), полоса частот, отводимая на передачу сигнала, и энергетика линии. Важность названных показателей определяется следующими причинами. Требование к достоверности и скорости передачи сообщений обуславливается областью применения систем передачи информации (СПИ). Занимаемая полоса частот и энергетика линии обуславливают ресурсы канала: полоса частот решающим образом влияет на электромагнитную совместимость радиосредств, а стоимость устройств, обеспечивающих энергетику радиолинии (антенны, выходные каскады передатчиков, входные каскады приёмников), составляет, как правило, основную часть стоимости СПИ.

Предварительный анализ систем можно вести по небольшому числу показателей качества. Обычно в их качестве берут скорость передачи достоверность передачи, определяемую вероятностью ошибки при передаче дискретных сообщений или отношением сигнал/шум на выходе демодулятора при передаче непрерывных сообщений.

Высокие показатели качества можно обеспечить при комплексном подходе к проектированию модулятора, кодирующего устройства и демодулятора, декодирующего устройства с учетом условий и ограничений, накладываемых на вид модуляции и кодирования, структуру и интенсивность помех, вид канала связи. При приеме в целом, хотя и обеспечивается наибольшая верность принятого сообщения, но оптимальный приемник из-за большого числа каналов очень сложен, следовательно, имеет большую стоимость. Поэтому используется поэлементный прием с последующим декодированием принятой кодовой комбинации. Некоторое ухудшение качества в верности принятого сообщения здесь компенсируется существенным упрощением приемника.

Уменьшить потери информации при обработке сигнала можно различными способами, в том числе за счет более позднего принятия решения. Такой вид решения называется «мягким». При таком режиме напряжение с выходов согласованных фильтров хранятся в ЗУ и используется при декодировании принимаемой кодовой комбинации.

Повышение верности принятого сообщения достигается также согласованием кодирующего и декодирующего устройства с каналом связи.

Разработаны 2 способа согласования кодека с каналом. Первый связан с подбором кода, второй – с преобразованием исходных каналов к стандартному дискретному каналу.

Устранение избыточности реальных источников сообщений в ряде случаев диктуется необходимостью повышения эффективности систем связи.

Устранение избыточности источников при цифровой передаче непрерывных сообщений, как правило, сопровождается согласованием источника с цифровым каналом.


СПИСОК ЛИТЕРАТУРЫ

1)Теория электрической связи: Методические указания по изучению курса и выполнению курсовой работы./Д. В. Астрецов, Екатеринбург, УФ СибГУТИ, 2001

2) Теория электрической связи: Учебник для вузов/А.Г. Зюко, Д.Д. Кловский, В.И. Коржик, М.В. Назаров; Под ред. Д.Д. Кловского.- М: Радио и связь, 1998.

3) Теория электрической связи: Учебник для вузов./Клюев Л.Л.- Минск: Дизайн ПРО, 1998.



ПРИЛОЖЕНИЕ А. СТРУКТУРНАЯ СХЕМА СИСТЕМЫ ПЕРЕДАЧИ НЕПРЕРЫВНОГО СООБЩЕНИЯ В ЦИФРОВОЙ ФОРМЕ


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно