Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Спектральные характеристики

Тип Реферат
Предмет Физика
Просмотров
1519
Размер файла
95 б
Поделиться

Ознакомительный фрагмент работы:

Спектральные характеристики

Спектральные характеристики

Демидов Р.А., ФТФ, 2105


Введение

В первой части работы я поставил себе цель описать линейные операторы в целом, а также подробно рассказать о важной характеристике спектра операторов – спектральном радиусе.

В этой части работы я подробнее остановлюсь на не менее важной характеристике спектров – резольвенте, и расскажу о связи этой характеристики с подвидами спектра оператора – с остаточным, точечным и непрерывными его частями. Вначале, опять же, необходимо остановиться на некоторых основных определениях и понятиях теории линейных операторов. Итак:

- Пусть A - оператор, действующий в конечномерном линейном пространстве E. Спектром оператора называется множество всех его собственных значений.

- Квадратную матрицу n×n можно рассматривать как линейный оператор в n-мерном пространстве, что позволяет перенести на матрицы «операторные» термины. В таком случае говорят о спектре матрицы.

- Пусть A - оператор, действующий в банаховом пространстве E над полем k. Число λ называется регулярным для оператора A, если оператор R(λ) = (A − λI)-1, называемый резольвентой оператора A, определён на всём E и непрерывен.

- Множество регулярных значений оператора A называется резольвентным множеством этого оператора, а дополнение резольвентного множества - спектром этого оператора.

- Максимум модулей точек спектра оператора A называется спектральным радиусом этого оператора и обозначается через r(A). При этом выполняется равенство:


Это равенство может быть принято за определение спектрального радиуса,приусловии существования данного предела.

Теперь рассмотрим состав самого спектра. Он неоднороден, и состоит из следующих частей:

- дискретный (точечный) спектр - множество всех собственных значений оператора A - только точечный спектр присутствует в конечномерном случае;

- непрерывный спектр - множество значений λ, при которых резольвента (A - λI)-1 определена на всюду плотном множестве в E, но не является непрерывной;

- остаточный спектр - множество точек спектра, не входящих ни в дискретную, ни в непрерывную части.

Таким образом, мы видим, что спектр оператора состоит из 3-х больших частей, принципиально различных.

Свойства резольвенты

Теорема 1: ограничен. Тогда является регулярной точкой.

Доказательство.. Пусть. Тогда .

- банахово, , причем он ограничен:

Резольвента существует и ограничена. Чтд.

Теорема 2:не принадлежит точечному спектру осуществляет биекцию на .

Доказательство.

- Если построена биекция, то не существует , за исключением тривиальной.

- Если - точка точечного спектра, то , что противоречит биективности .

Теорема 3:(Тождество Гильберта)

Доказательство.

,,

,верно => Чтд.

Следствия:

1) - коммутативность резольвенты.

2) (т.к. непрерывна по в точке ), т.е. она бесконечно дифференцируема (аналитическая функция).

Итак, - аналитическая оператор-функция на множестве регулярных точек (резольвентном множестве). - разложение в ряд Лорана (имеет место при , но, возможно, и в большей области).

Упражнение: (Примеры вычисления спектрального радиуса)

,

.

Возьмем.Тогда

Таким образом . Эта оценка достижима при , т.е. ,и rc(A)=1.

Теорема 4: всякая к.ч , есть регулярная точка самосопряженного оператора A.

Доказательство.

] регулярная точка, значит не собственное значение и . Проверим ограниченность .


ограничен, и его можно распространить на с сохранением нормы оператора, так как не собственое значение. Если при этом не замкнуто, то не замкнут. При этом линейный оператор, обратный к замкнутому, а также сопряженный к нему, замкнут => самосопряженный оператор замкнут.

Спектральная теория в электронике

Полезнейшим приложением спектральной теории в физике является теория спектров электрических сигналов. Суть теории состоит в том, что любой сигнал на входе линейной цепи возможно представить совокупностью гармонических колебаний, или тестовых сигналов, заданной частоты, вопрос такого разложения состоит в нахождении амплитуд результирующих колебаний. Последние вычисляются определенным образом.

Классическое преобразование Фурье представляет из себя линейный оператор.

Спектральная теория здесь работает следующим образом – для периодических входных сигналов для нахождения соответствующих амплитуд используется интегральное преобразование – дискретный Фурье- образ:


в котором разложение начинается с частоты следования wк. В данном случае очевидно, что, раз выходной сигнал представляется суммой бесконечного ряда, то мы имеем дело с точечным спектром сигнала, поскольку он дискретен. Следовательно, любое периодическое колебание можно рассматривать как сигнал с дискретным спектром, поскольку непрерывным спектром он не обладает. Однако, если же взять непериодический сигнал, например, единичный прямоугольный импульс, то вводится понятия прямого и обратного преобразований Фурье:

,

где S(w) – спектральная плотность сигнала s(t).

Соответственно, S(w) – непрерывная по w функция, и в данном.


Заключение

В работе не ставилась цель охватить весь курс спектральной теории и спектрвльных характеристик, а ставилась цель изучить основные спектральные характеристики линейных операторов, и обрисовать применение этих понятий. Опять же, класс Фурье преобразований включает в себя намного больший объем, чем тот, о котором упомянуто в работе, они используются в теории алгоритмов при кодировке и сжатии информации в цифровом формате изображений JPEG, в вейвлет - преобразованиях. Новое поколение функциональной электроники содержит на элементарном уровне элементы, способные производить непрерывные преобразования Фурье и Лапласа, что намного ускоряет работу электронных устройств.

В общем и целом, наряду с первой частью работа дает представление о б основных спектральных характеристиках линейных операторов и их применении в различных областях математики, информатики и физики.

Список литературы

1. Лекции по математической физике, Попов И.Ю., СПбГУ ИТМО, кафедра высшей математики.

2. Элементы теории функций и функционального анализа, А.Н. Колмогоров и С.В. Фомин.

3. Теория цепей и сигналов, Новиков Ю.Н.

4. Свободная энциклопедия Википедия.

5. Сжатие данных, изображения и звука, Д. Сэломон.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно