Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Определение точного коэффициента электропроводности из точного решения кинетического уравнения

Тип Реферат
Предмет Физика
Просмотров
1292
Размер файла
39 б
Поделиться

Ознакомительный фрагмент работы:

Определение точного коэффициента электропроводности из точного решения кинетического уравнения

В.Кинетические Свойства

§ 6. Кинетическое уравнение

Носители заряда в металле или полупроводнике могут подвергаться действию внешних полей и градиентов температуры. Они также испытывают рассеяние на примесях, колебаниях решетки и т. д. Эти эффекты должны быть сбалансированы — нас интересуют такие ситуации, в которых электрон ускоряется полем, но при рассеянии теряет избыточные энергию и импульс. В этой главе мы рассмотрим «обычные» кинетические свойства, наблюдаемые при наложении постоянных полей.

Общий метод решения этой задачи основан на кинетическом уравнении, или уравнении Болъцмана. Мы рассматриваем функцию fk(r) — локальную концентрацию носителей заряда в состоянии k в окрестности точки r. Строго говоря, эту величину можно определить только в терминах мелкозернистых распределений, средних по ансамблю, матриц плотности и т. д. Имеется обширная литература по этому вопросу, но она относится скорее к формальному аппарату квантовой статистической механики, чем к теории твердого тела.

Посмотрим теперь, какими способами функция fk(r) может изменяться во времени. Возможны процессы трех типов:

1. Носители заряда приходят в область пространства вблизи точки r и уходят из нее. Пусть vk — скорость носителя в состоянии k. Тогда в течение интервала времени t носители заряда в этом состоянии пройдут путь tvk. Следовательно, на основании теоремы Лиувилля об инвариантности фазового объема системы число носителей в окрестности точки r в момент времени t равно числу их в окрестности точки r – tvk в момент времени 0:

fk(r, t) = fk(r – tvk, 0). (35)

Это означает, что скорость изменения функции распределения из-за диффузии есть

¶fkt]diff = – vk×¶fk/¶r = – vk×Ñfk. (36)

2. Внешние поля вызывают изменение волнового вектора k каждого носителя, согласно равенству

(37)

Величину можно рассматривать как «скорость» носителя заряда в k-пространстве, так что по аналогии с равенством (35) имеем

(38)

следовательно, под действием полей функция распределения меняется со скоростью

(39)

(мы использовали здесь обозначение ¶fk/¶k для градиента в k-пространстве — оператора Ñk).

3. Влияние процессов рассеяния оказывается более сложным. Мы ограничимся здесь в основном упругим рассеянием. При этом функция fk меняется со скоростью

¶fkt]scatt = ∫{ fk' (1 – fk) – fk (l – fk')}Q(k, k') dk'. (40)

Процесс рассеяния из состояния k в состояние k' приводит к уменьшению fk. Вероятность этого процесса зависит от величины fk — числа носителей в состоянии k, и от разности (1 – fk') — числа свободных мест в конечном состоянии. Имеется также обратный процесс, переход из k' в k, который ведет к увеличению функции fk; он пропорционален величине fk'(1 – fk). Очевидно, надо просуммировать по всевозможным состояниям k'. Для каждой пары значений k и k' существует, однако, «собственная» вероятность перехода Q (k, k'), равная скорости перехода в случае, когда состояние k полностью заполнено, а состояние k' вакантно. Согласно принципу микроскопической обратимости, та же функция дает и скорость перехода из k' в k, поэтому под интегралом появляется общий множитель.

Кинетическое уравнение выражает следующее: для любой точки r и для любого значения k полная скорость изменения функции fk(r) равна нулю, т. е.

¶fkt]scatt + ¶fkt]field + ¶fkt]diff = 0. (41)

Отметим, что здесь рассматривается стационарное, но не обязательно равновесное состояние. Для последнего функция распределения обозначается через f0k, оно осуществляется только в отсутствие полей и градиентов температуры.

Допустим, однако, что рассматриваемое стационарное распределение не слишком сильно отличается от равновесного.
Положим

gk = fk – f0k. (42)


где

f0k = 1/{exp[(E k – z)/kT] + 1} (43)

Здесь нужно проявить некоторую осторожность. Именно, как определить функцию f0k в случае, когда температура зависит от координат? Будем считать, что в каждой точке можно корректно определить локальную температуру T(r), и положим

gk(r)=fk(r) – f0k{3T(r)}. (44)

Если введение локальной температуры вызывает затруднения, можно потребовать, чтобы окончательное решение удовлетворяло какому-либо дополнительному условию, например

ògk(r)dk = 0. (45)

Подставляя выражение (42) в кинетическое уравнение (41) и используя равенства (7.2) и (7.5), получаем

– vk×¶fk /¶r – e /ħ(E + 1/c[vk ´ H]) ×¶fk /¶k = – ¶fk /¶t]scatt , (46)

или

– vk×¶fk /¶T ÑT – e /ħ(E + 1/c[vk ´ H]) ×¶ f0k /¶k = – ¶fk /¶t]scatt + vk×¶gk /¶r + e /ħ(E + 1/c[vk ´ H]) ×¶gk /¶k. (47)

С помощью формулы (43) это уравнение можно переписать в виде

(¶f0 /¶E)vk×{( E (k) – z) / T×ÑT + e (E – 1/e×Ñz)} = – ¶fk /¶t]scatt + vk×¶gk /¶r + e /ħc[vk ´ H] ×¶gk /¶k. (48)

Это — линеаризованное уравнение Больцмана. В нем опущен член (E×¶gk /¶k) порядка E2, соответствующий отклонениям от закона Ома. Отброшен также член vk [vk ´ H], тождественно равный нулю; в левую часть уравнения магнитное поле явно не входит.

Подставляя выражение (40) в уравнение (48), можно убедиться, что мы получили линейное интегро-дифференциальное уравнение относительно «добавки» gk(r) к функции распределения. Функция gk(r) определяется интенсивностью электрического поля и величиной градиента температуры, входящими
в неоднородный член в левой части. Далее в этой главе мы будем отыскивать решения кинетического уравнения для различных случаев в порядке увеличения сложности.

§ 7. Электропроводность

Пусть на систему наложено только электрическое поле E, и в «бесконечной» среде поддерживается постоянная температура. С учетом выражения (40) получаем

(– ¶f0 /¶E)vk×eE = – (¶f0 /¶t)]scatt = ò(fk– fk¢)Q(k,k¢)dk¢= ò(gk– gk¢)Q(k,k¢)dk¢ (49)

Это есть простое интегральное уравнение для неизвестной функции gk.

Вместо того чтобы, непосредственно решать его, сделаем феноменологическое предположение:

– ¶fk /¶t]scatt = gk/t (50)

Тем самым мы вводим время релаксации t. При выключении поля любое отклонение gk от равновесного распределения будет затухать по закону

– ¶gk /¶t = gk/t, (51)

или

gk(t) = gk(0)e – t / t . (52)

Подставляя определение (50) в уравнение (49), находим

gk = (– ¶f0 /¶E) tvk×eE (53)

Чтобы найти электропроводность, вычислим соответствующую плотность тока

(54)

Здесь при переходе от первой строки ко второй принято во внимание, что

òf0kevk(r)dk º 0,

использованы также формулы для преобразования объемного интеграла в k-пространстве в интеграл по изоэнергетическим поверхностям и по энергии.

В металле функция (– ¶f0 /¶E) ведет себя как d-функция от (E – z), поэтому остается только проинтегрировать по поверхности Ферми. Таким образом,

(55)

Сравним это выражение с обычной макроскопической формулой

J = s×E, (56)


где s – тензор. Получим

(57)

Обычно имеют дело с кристаллами кубической симметрии,при этом тензор электропроводности сводится к скаляру, помноженному на единичный тензор. В случае, когда оба вектора E и J направлены по оси х, подынтегральное выражение в (55) есть

(vk vk × E) = v2xE, (58)


что дает 1/3 вклада от квадрата скорости, v2E. Поэтому

(59)

где мы ввели длину свободного пробега

L = tv. (60)

Это есть основная формула для электропроводности.

Интересно посмотреть (фиг. 97), как выглядит функция распределения fk, заданная выражением (7.8). Как видно из равенства (53), функция gk велика только вблизи поверхности Ферми.

Фиг.97. а – смещенная поверхность Ферми; б – смещенное распределение Ферми.

Небольшая добавка появляется с той стороны, где vk×eE>0, т. е. там, где электроны ускоряются полем. Та же величина вычитается с противоположной стороны.

Фактически по теореме Тейлора можно написать

(61)

Это выглядит так, как будто вся сфера Ферми сдвинулась в k-пpoстранстве на величину (et/ħ)E. Это несколько неверная интерпретация. В действительности поле не действует на состояния вблизи дна зоны, в глубине сферы Ферми. Из-за принципа Паули поле не может придать ускорения электронам в таких состояниях; по этой же причине они не рассеиваются примесью.

Отметим, однако, что электропроводность не зависит от температуры (если не считать возможной температурной зависимости t). Эта же формула справедлива при T = 0, когда распределение Ферми имеет совершенно четкую границу. Можно сказать, что электропроводность выражается через смещение жесткой поверхности Ферми.

Заметим также, что выражение (61) можно представить в виде

fk = f0(Ek + etvkE), (62)

как будто к энергии электрона в состоянии k добавилась величина

dEk = etvkE. (63)

Это в точности соответствует классической ситуации, которая имела бы место, если бы электрон со скоростью vk двигался в поле E в течение интервала времени t. Это замечание лежит в основе кинетического метода решения подобных задач. Добавочная энергия, приобретаемая в промежутках между столкновениями с примесями, соответствует наличию дрейфовой скорости dv в направлении поля; именно

dv(¶E/¶v) = evEt, (64)


или для классической частицы массы m

dv(¶E/¶v) = evEt / mv. (65)

Пусть концентрация частиц есть n, тогда полная плотность тока равна

J = nedv, (66)

и, сравнивая формулы (65), (66) и (56), находим

s = ne2t/m. (7.33)

Легко показать, что в случае свободного электронного газа формулы (67) и (59) эквивалентны; в металле последняя формула принципиально значительно лучше. Она показывает, что электропроводность зависит только от свойств электронов на уровне Ферми, а не от полной концентрации их. Большую электропроводность металлов следует объяснять скорее наличием небольшой группы очень быстрых электронов на вершине распределения Ферми, а не высоким значением полной концентрации свободных электронов, которым можно придать небольшую дрейфовую скорость.

Основная формула (59) показывает также, что происходит, когда площадь свободной поверхности Ферми уменьшается в результате взаимодействия с границами зоны, и учитывает влияние решетки, ограничивающее эффективную скорость электронов на поверхности Ферми. Такие эффекты действительно можно наблюдать в металлах типа Bi.

С другой стороны, формула кинетической теории (67) удобна для полупроводников. При этом под п следует понимать концентрацию свободных носителей заряда. Обычно пишут

s = n|е|m (68)


где

m = |e|t/m (69)

есть подвижность носителей. В более общем случае считают, что электроны и дырки вносят независимые вклады в полный ток и определяют их подвижности равенством

s = nh |е| mh + ne |е| me . (70)

Нетрудно вывести формулу (68), скажем, из (54), принимая в качестве f° классическую функцию распределения. При этом мы допускаем, что время релаксации t может зависеть от энергии; в формулу (69) надо подставить его среднее значение

(71)

где N(E) есть плотность состояний в рассматриваемой зоне. Таким образом,

me= |e|te /me (7.38)

где теэффективная масса электронов. Аналогичная формула справедлива и для дырок. Из этих формул видно, что подвижность может зависеть от температуры. С ростом T распределение размазывается и среднее время релаксации изменяется. В случае металла то обстоятельство, что т зависит от энергии, не играет большой роли, ибо существенно только значение t (EF).


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно