Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Элементы статистической термодинамики

Тип Реферат
Предмет Химия
Просмотров
2649
Размер файла
67 б
Поделиться

Ознакомительный фрагмент работы:

Элементы статистической термодинамики

1. Распределение Гиббса и распределение Больцмана. Структурные постоянные молекул.

В случае невзаимодействующих частиц идеального газа каноническое распределение Гиббса превращается в распределение Больцмана. В качестве подсистем канонического ансамбля рассматриваются приближённо независимые молекулярные движения:

Поступательное,

Вращательное,

Колебательное,

Электронное,

Ядерное.

Статистические суммы электронного и ядерного состояний равны кратностям вырождения их основных уровней (термов). У электронного движения это число микросостояний, объединённых в терм. У ядерного движения это спиновая мультиплетность ядерного остова.

Таблица 1. Постоянные двухатомных молекул (Табл. 15.2, стр. 467, Даниэльс, Олберти).

Молекула

NAm - масса

приведённая (эксперим), г

R0×1010, м, см-1D, эВD, кДж/моль
Br2 39.9582.283 323.2 1.971 190.2219
CH 0.9300241.11982861.6 3.47 334.8909
Cl2 17.489421.988 564.9 2.475 238.863
CO 6.858411.12822170.2111.1081072.037
H2 0.5040660.74164395.24 4.476 431.9802
H2+ 0.5039281.062297 2.648255.5594
HCl 0.979889 1.274602989.74 4.430427.5406
HBr 0.99558 1.41382649.67 3.75361.9136
HI 1.000187 1.6042309.53 3.056 294.9356
KCl 18.599 2.79 280 4.42 426.5757
LiH 0.881506 1.59531405.649 2.5 241.2759
Na2 11.49822 3.078 159.23 0.73 70.45255
NO 7.46881 1.15081904.03 6.487 626.0626
O2 8.00000 1. 207391780.361 5.080490.2726
OH0.94838 0.97063735.21 4.35419.8198

Таблица 2. Спиновые квантовые числа наиболее распространённых ядер:

ЭлементЯдро изотопа

Спин

ядра

I

Мультиплетность

ядерного спина

2I+1

Водород1H½2
Водород2D13
Водород3T½2
Азот 14N13
Азот 15N½2
Фтор19F½2
Углерод12С01
Углерод13С½2

2. Основные формулы. Вероятности и заселённости.

Вероятности (Заселённости - мольные доли и статистические веса).

Суммы по состояниям молекулярных движений.

Мольная и молекулярная статистическая суммы.

Энтропия видов движения.

Средняя энергия коллектива.

- для 1 поступательной степени свободы (приближение)

-для 3 поступательных степеней свободы 1 частицы

- для 2 вращательных степеней свободы 1 частицы

(линейная молекула)

- для 1 степени свободы вращения 1 частицы (приближение)

- для 3-х мерного вращения 1 частицы

(общая модель)

-для линейного осциллятора

(1 колебательная степень свободы молекулы)

-Химический потенциал, отнесённый к одной частице (Внимание! не к молю!)

Химический потенциал и мольная концентрация.

Химическое сродство и константа равновесия

Константа химического равновесия в смеси идеальных газов

Рабочие формулы:

Вариант 1. Здесь представлены электронные суммы состояний. Их следует вычислять по отдельности. Электронные уровни должны быть выражены в единой шкале. Этот способ строгий, но менее доступный:

Вариант 2. Здесь представлены кратности вырождения электронных уровней и разность электронных уровней. Этот способ удобен для расчёта диссоциативных равновесий:

(ВНИМАНИЕ! В учебнике Даниэльса и Олберти в формулах допущены ошибки, связанные с учётом электронных состояний. Здесь ошибки исправлены)

ЗАДАЧИ (с примерами решений) (из Даниэльса – Олберти и из задачника МГУ - Ерёмин и соавторы – см. Литература)

ЗАДАЧА 1.

У молекулы с массой M четыре квантовых состояния распределены между двумя энергетическими уровнями. Спектр уровней определён в виде массива: (0, E, E, E).

Нарисуйте энергетическую диаграмму состояний.

Как называют подобные уровни?

Каковы средние мольные доли частиц, заселяющих эти уровни при температуре T?

Сколько частиц в среднем будет заселять эти уровни в коллективе из N частиц?

Какова поступательная энтропия газа с этими характеристиками в объёме V?

Каково давление этого газа?

При каких температурах:

а) - все частицы будут находиться на основном уровне?

б) - все частицы будут поровну заселять оба уровня?

В) - заселённости всех квантовых состояний равны?

Запишите выражение для средней энергии этого газа и покажите, как она изменяется с увеличением температуры?

ЗАДАЧА 2.

У молекулы с массой M три квантовых состояния относятся к трём энергетическим уровням. Спектр уровней определён в виде массива: (E1, E2, E3).

Нарисуйте энергетическую диаграмму состояний.

Рассчитайте мольные доли частиц, заселяющих эти уровни при температуре T.

Рассчитайте среднюю энергию частицы при температуре T.

Рассчитайте энергию коллектива из N частиц при температуре T.

Можете решать задачу, придав уровням определённые численные значения, например

(E1, E2, E3) = (A, B, C).

ЗАДАЧА 3.

У молекулы с массой M энергетический спектр задан массивом: (0,E1, E2).

Уровни вырождены. Их кратности вырождения равны (g1, g2, g3) =(1, 2, 3), так что коллектив из Nчастиц распределяется между шестью возможными квантовыми состояниями. Для этого коллектива нарисуйте энергетическую диаграмму состояний, рассчитайте мольные доли частиц, заселяющих эти уровни при температуре T, рассчитайте среднюю энергию одной частицы.

Можете придать уровням определённые значения.

ЗАДАЧА 4.

Запишите выражение поступательной статистической суммы с учётом неразличимости частиц. Рассчитайте при T=300 K поступательную энтропию:

а) газообразного аргона.

б) газообразного водорода для его трёх изотопов: протия 1H, дейтерия D (2H), трития T (3H)].

в) газообразного молекулярного азота (изотопы 14N и 15N).

ПРИМЕЧАНИЕ: Для изотопозамещённых молекул используйте приближённое (но почти точное) правило, согласно которому силовая константа колебания не изменяется при замене атома его изотопом.

ЗАДАЧА 5.

Запишите выражение поступательной вращательной статистической суммы при T=300 K с учётом числа симметрии молекул.

Рассчитайте вращательную энтропию:

а) молекулярного азота (изотоп 14N) при T=300 K.

б) молекулярного кислорода (изотоп 16O) при T=300 K.

Недостающие данные можно взять из справочника

ЗАДАЧА 6.

Запишите выражение колебательной статистической суммы при T=300 K с учётом числа симметрии молекул. Рассчитайте колебательную энтропию:

а) молекулярного водорода для его трёх изотопов (1H; 2D; 3T) при T=300 K.

б) молекулярного азота (изотоп 14N).

Недостающие данные можно взять из справочника.


ЗАДАЧА 7.

Рассчитать при 298 К константу равновесия для реакции изотопного обмена: D+H2=H+DH.

Считать, что равновесные расстояния и энергии диссоциации молекул H2 и DH одинаковы.

(Ответ в учебнике Д-О: K=7.17 ).

РЕШЕНИЕ

Таблица 1. Структурные параметры молекул и изотопов атома водорода.

Qяд=

= gяд

Qэл=

= gэл

M, у. е. , у. е. , см-1D, кДж/моль
D322-
H21(+3) 12½24395.24431.9802
H22-
DH3´2132/3-4395.24 431.9802

Вычисления:

K=KQ = Kx = Kc = Kp= [(gяд1´gэл1) ´M13/2´1/1´ [(gяд2´gэл2) ´M23/2´2/2´ [(gяд3´gэл3) ´M33/2´3/3´ [(gяд4´gэл4) ´M43/2´4/4

Все прочие величины сокращаются, и получаем:

K= [(2´3´2) ¸(3´1)] ´ [3´¸(2´] 3/2 ´ { [(2/3) ¸1] ¸ [¸2] } = 4´ (0.75) 3/2 ´8/3 = (32/3) ´0.6495= 6.928

Резюме:

Это одна из простейших задач, в которой свойства равновесной смеси зависят лишь от простейших структурно-физических параметров ядер изотопов водорода.

ЗАДАЧА 8.

Рассчитать константу равновесия для реакции диссоциации молекулы CO на нейтральные атомы C и O при 2000 К: CO(газ) =C(газ) +O(газ).

Степени вырождения основных электронных состояний атомов C и O равны 9 (Термы 3P).

Значение, рассчитанное по термохимическим данным, равно 7.427×10-22 атм

Спектроскопические данные для CO приведены в табл.15.2 (Д-О, стр.467).

(Ответ в учебнике Kp= 7.790×10-22 атм).

РЕШЕНИЕ.

Таблица 1. Структурные параметры частиц. (Табл. 15.2 (Д-О, стр.467).

Qяд=

= gяд

Qэл=

= gэл

M, у. е. , у. е.

R0×1010,

М

, см-1D0, кДж/моль
CO11286.8571.128222170.211072.037
C19-
O1916-

Полезные предварительные вычисления резко сокращают расчёты, позволяя их контролировать. Это очень хорошая школа тренировки и самоконтроля.

Масса молекулы

m(CO) = 28´10-3/6.023´1023= 4.649´10-26 кг.

Приведённая масса молекулы (для вычисления момента инерции)

(CO) = 6.857´10-3 кг /6.023´1023= 1.1385´10-26 кг.

Момент инерции молекулы

I(CO) = 1.1385´10-26 ´ (1.1282´10-10) 2 =1.449´10-46 кг´м2.

Энергия диссоциации

D0(CO) = (1072000/6.023) ´10-23 Дж =1.78´10-18 Дж.

Теплота реакции (равна энергии диссоциации) Qv = U0 = Ee

DEe(CO ® C+O) = D0(CO) = 1.78´10-18 Дж.

Тепловой "квант"

kT= 1.38´10-23´2000=2.76´10-20 Дж.

Показатель электронного фактора Больцмана

DEe(CO) / kT = 1.78´10-18 Дж/2.76´10-20 Дж = 64.5.

Фактор Больцмана

exp(-Ee(CO) / kT) = exp(-64.5) = 0.973´10-28.

Квант колебательного возбуждения

h= hc= 6.62´10-34´3´1010´2170.21=19.86´10-21´2.170= 4.3096´10-20 Дж.

Показатель колебательного фактора Больцмана

h/ kT=4.3096´10-20/2.76´10-20=15.61´10-1=1.561.

Колебательный фактор Больцмана

exp(-h/ kT) =exp(-1.561) = 0.21.

13) Стандартный мольный объём V0= (RT/p0) =(8.314´2000¸101325) = 0.16442.

14) Статистические суммы молекулы CO:

14.1) Поступательная

q0t (CO) = [2´p´1.38´10-23´2000´0.028¸(6.023´1023)] 3/2 ¸(6.62´10-34) 3=

= [10-46 ´486 ¸6.023] 3/2 ¸(6.62´10-34) 3== [80.69] 3/2´1033¸ [290.12] = 2.498´1033.

14.2) Вращательная

q0r (CO) = 8´p2´I ´1.38´10-23´2000/h2 =2.1792´10-18´ I/(6.62´10-34) 2 =720.

Момент инерции: I(CO) =1.138´10-26´1.273´10-20=1.448´10-46 кг´м2

14.3) Колебательная от нулевого колебательного уровня

q0v (CO) =1/{1 - exp(-h/ kT) }= 1/ (1-0.21) =1/0.79=1.265.

14.4) Электронная (отсчёт энергий нулевых уровней - от свободных атомов C и O)

q0el (CO) = 1´ exp [-E e(CO) / kT] =exp [-(-64.5)] = 0.973´10-28.

14.5) Мольная q0 (CO) = 2.498´1033´720´1.265´1028=

=2.498´720´1.265´1061=2.275´1064. .

14.6) Молекулярная статсумма CO (2-й сомножитель в Kp):

Q(CO) = 0.16442´2.275´1064/6.023´1023=6.21´1039.

15) Статистические суммы атома C:

15.1) Поступательная

q 0t (C) = [2´p´1.38´10-23´2000´0.012¸(6.023´1023)] 3/2 ¸(6.62´10-34) 3=0.700´1033.

15.2) Электроннаяq 0el (C) = gel (C, терм 3P) = 9.

15.3) Мольная q0 (C) = 0.700´1033´9 =6.300´1033.

15.4) Молекулярная статсумма атома C (3-й сомножитель в Kp):

Q(C) = 0.16442´6.300´1033/6.023´1023=1.72´109.

16) Статистические суммы атома O:

16.1) Поступательная

q0t (O) = [2´p´1.38´10-23´2000´0.012¸(6.023´1023)] 3/2 ¸(6.62´10-34) 3=1.078´1033.

16.2) Электроннаяq 0el (O) = gel (O, терм 3P) = 9.

16.3) Мольнаяq0 (O) =1.078´1033´9= 9.699´1033.

16.4) Молекулярная сумма атома O (4-й сомножитель в Kp):

Q(O) = 0.16442´9.699´1033/6.023´1023=2.647´109.

Таблица 2. Сводка статистических сумм для реакции CO(газ) =C(газ) +O(газ)

qt0qr0qV0qe0Q0iQ0
CO2.498´10337201.2650.973´10-282.275´1064 - 16.21´1039
C0.700´1033119 = g(3P) 6.300´1033+11.72´109
O1.078´1033119 = g(3P) 9.699´1033+12.647´109
Kp=7.33´10-22

17) Константа равновесия Kp (безразмерная):

Kp= [Q0(CO)] -1 ´Q0(C) ´Q0(O)

Kp = (1.72´109) ´(2.647´109) ´ [6.21´1039] -1=1.72´2.647´0.161´109´109´10-39=7.33´10-22.

Безразмерны статистические суммы и полученная константа безразмерна.

Её модуль тот же, что и у Kp, где размерностью давления является атмосфера.

Резюме:

Полученный нами результат заметно лучше того, что приведён в учебнике. Это наглядная иллюстрация больших преимуществ современной электронной вычислительной техники, тогда как в учебнике расчёты выполнялись старыми способами – по таблицам и логарифмической линейке. Отклонение от экспериментальной величины и его квадрат у нас меньше:

У нас: [(7.330-7.427) / 7.427] 2 =1.71´10-4´100%=0.017% ®|= 0.13%,

У Д-О: [(7.790-7.427) / 7.427] 2 =2.39´10-3´100%=0.239% ®|= 0.49%.

ЗАДАЧА 9. (Д-О 17.16)

Для реакции, протекающей при 698.2 К в газовой фазе

H2 (газ) + I2 (газ) =2 HI (газ)

на основании экспериментальных измерений получена константа равновесия

K698.2= [HI] * 2/([H2] * [I2] *) =54.5.

Рассчитать эту же величину статистическим методом, если DrU0o= - 9.728 кДж/моль

РЕШЕНИЕ.

Таблица 1. Структурные параметры частиц. (Табл.15.2 (Д-О, стр.467).

M, г/мольI´1048, кг´м2s
H22.0164.5924405
I2 (газ) 25674302214
HI (газ) 12943.112309

1) Предварительные расчёты колебательных частот и факторов Больцмана

Тепловой "квант" равен kT=1.38´10-23´698.2=9.6352´10-21 Дж

Колебательные характеристики молекул:

H2: (H2) = c´4405=3´1010 (см/с) ´ 4405(1/см) = 1.3215´1014 (1/с)

h(H2) = 6.62´10 - 34(Дж´с) ´ 1.3215´1014 (1/с) = 8.748´10 - 20 Дж

h/kT=8.748´10 - 20 Дж/9.6352´10-21 Дж=9.08

exp(-h/kT) = exp(-9.08) =0.000114;

q0V (H2) = [1-exp(-h/kT)] -1=0.999886-1@1;

I 2: (I 2) = c´214=3´1010 (см/с) ´ 214(1/см) = 6.42´1012 (1/с)

h(I 2) = 6.62´10 - 34(Дж´с) ´ 6.42´1012 (1/с) = 4.25´10 - 21 Дж

h/kT=4.25´10 - 21 Дж/9.6352´10-21 Дж=0.441

exp(-h/kT) = exp(-0.441) =0.643;

q0V(I 2) = [1-exp(-h/kT)] -1=0.357-1@2.80;

HI: (I 2) = c´2309=3´1010 (см/с) ´ 2309 (1/см) = 6.93´1013 (1/с)

h(I 2) = 6.62´10 - 34(Дж´с) ´ 6.93´1013 (1/с) = 4.588´10 - 20 Дж

h/kT=4.588´10 - 20 Дж/9.6352´10-21 Дж=4.762

exp(-h/kT) = exp(-4.762) =0.00855;

q0V(I 2) = [1-exp(-h/kT)] -1=0.99145-1@1;

Показатель электронного сомножителя в константе равновесия:

DU0o/RT = - 9728/(8.314´698.2) = - 1.676

Сам электронный сомножитель в константе равновесия:

exp(-DU0o/RT) = exp(1.676) = 5.348

2) Константа равновесия

Число частиц за пробег реакции не изменятся Drn=0;

K=Kc=Kp= [Q0(H2)] - 1 [Q0(I2)] - 1 [Q0(HI)] 2; ®

Сокращается большинство численных коэффициентов и остаётся:

K= [M(HI) 2M(H2) - 1´M(I2) - 1] 3/2 ´ [I(HI) 2´I(H2) - 1´I(I2) - 1] ´ [s(H2) s (I2) /s (HI) 2] [´ [q0(HI)] 2´ [q0(H2)] - 1´ [q0(I2)] - 1´exp(-DU0o/RT);

Из набора молекулярных параметров играет роль множитель:

[M(HI) 2´M(H2) - 1´M(I2) - 1] 3/2´ [I(HI) 2/I(H2) ´I(I2)] ´ [s(H2) ´s (I2) /s (HI) 2] = [1292/(2.016´256)] 3/2´ [43.12/(4.597´7430)] ´(2´2/12) =0.031´18.136´4=183.1´0.0544´4=39.84.

Колебательные статистические суммы

[q0(HI)] –2 @ 1.

[q0(H2)] @1.

[q0(I2)] =2.80.

Электронный сомножитель:

exp(-DU0o/RT) = exp(1.676) = 5.348

Константа равновесия равна:

K=5.348´39.84/2.80=76.1.

Резюме:

Простота приближений и пренебрежение специфическими спиновыми эффектами ядер, приводят к выводу о том, что согласие теории и эксперимента очень хорошее. Отличие составляет всего 30%.

ЗАДАЧА 10. (Д-О 17.27)

Рассчитать статистическим методом константу равновесия и степень диссоциации H2(газ) при 3000 K и 1 атм. При этих условиях Лэнгмюр изучил протекающую в газовой фазе реакцию

H2 (газ) =2H (газ) и нашёл a=0.072. Учтите, что вследствие электронного спина основное состояние атома водорода дважды вырождено (gel=2).

РЕШЕНИЕ.

Предварительные вычисления

Тепловой "квант" kT =1.38´10-23´3000 Дж = 4.14´10-20 Дж

Стандартный мольный объём V0= (RT/p0) =(8.314´3000¸101325) = 0.2462.

m(H2) = 2´10-3/6.023´1023= 3.320´10-27 кг.

m(H) = 1´10-3/6.023´1023= 1.660´10-27 кг.

Приведённая масса молекулы (для вычисления момента инерции)

(H2) = m(H) ´m(H) / [m(H) + m(H)] = m(H) /2= m(H2) /4=0.83´10-27 кг.

Момент инерции молекулы

I(H2) = 0.83´10-27 кг´(0.7416´10-10) 2 м2 =4.565´10-48 кг´м2.

Энергия диссоциации равна DEe(H2 ® 2H) = D0(H2) = 431980.2 /6.023´1023 Дж = =7.1722´10-19 Дж (см. таблицу 1).

Показатель степени электронного фактора Больцмана

D0(H2) / kT = 7.1722´10-19 Дж/4.14´10-20 Дж =17.324

Электронный фактор Больцмана (статистическая сумма молекулы)

exp [D0(H2) / kT] = exp(17.324) = 3.3397780´107= 1/2.99421´10-8.

Квант колебательного возбуждения

h= hc= 6.62´10-34´3´1010´4395.24=8.72895´10-20 Дж.

Показатель колебательного фактора Больцмана

h/ kT=8.72895´10-20 Дж/4.14´10-20 Дж =2.10844.

Колебательный фактор Больцмана

exp(-h/ kT) =exp(-2.10844) = 0.1214.

14) Статистические суммы молекулы H2:

14.1) Поступательная

q0t (H2) = [2´p´3.320´10-27´1.38´10-23´3000] 3/2 ¸(6.62´10-34) 3=

= (8.636´10-46) 3/2¸(6.62´10-34) 3= 25.378´10-69¸290.12´10-102=8.7474´1031

14.2) Вращательная

q0r (H2) = 8´p2´I´1.38´10-23´3000/h2 =3.269´10-18´I/(6.62´10-34) 2 =

=3.269´4.565´10-66/43.824´10-68 =34.05

Момент инерции: I(H2) = 4.565´10-48 кг´м2

14.3) Колебательная от нулевого колебательного уровня

q0v (H2) =1/{1 - exp(-h/ kT) }= 1/ (1-0.1214) =1/0.8786=1.1382.

14.4) Электронная (отсчёт энергий нулевых уровней - от свободных атомов H)

q0el (H2) = 1´ exp [-E e(H2) / kT] = exp [D0(H2) / kT] = exp(17.324) = 3.3398´107.

14.5) Мольная q0 (H2) = 0.2462 ´8.7474 ´1031 ´34.05 ´1.1382 ´3.3398´107=2.78755´1040.

14.6) Молекулярная статсумма H2 (2-й сомножитель в Kp):

Q(H2) = 2.78755´1040/6.023´1023=4.63´1016.

15) Статистические суммы атома H:

15.1) Поступательная

q 0t (H) = [2´p´1.66´10-27´1.38´10-23´3000] 3/2 ¸(6.62´10-34) 3=

=(5. 194´10-46) 3/2¸290.12´10-102= 11.837´10-69¸290.12´10-102= 4.080´1031

15.2) Электроннаяq 0el (H) = gel (H, терм 2S) = 2.

15.3) Мольная q0 (H) = 4.080´1031´2 =8.160´1031.

15.4) Молекулярная статсумма атома H (3-й сомножитель в Kp):

Q(H) = 0.2462´8.160´1031/6.023´1023=3.3336´107.

16) Константа равновесия Kp (безразмерная):

Kp= [Q0(H2)] - 1 ´ [Q0(H)] 2

Kp = [4.63´1016] -1´ (3.3336´107) 2 =1.1113´1015´ [4.63´1016] -1=0.02400

17) Степень диссоциации определяется следующими выражениями:

H2 = 2H·®М атериальный баланс в следующей строке:

(1-a) ´p0 2a´p0®Далее две равновесные мольные доли

a) X*(H2) =(1-a) /(1+a),

b) X*(H) = 2a/(1+a).

Равновесные парциальные давления – доли от общего равновесного давления:

d) p*(H2) = [(1-a) /(1+a)] ´p*,

e) p*(H·) = [2a/(1+a)] ´p*.

По условию задачи общее давление 1 атм.

®Константа равновесия равна:

Kp = [2a/(1+a)] 2/ [(1-a) /(1+a)] =4a2/(1-a2) = 0.024.

Получилось уравнение: 4a2/(1-a2) = 0.024.

А) РЕШЕНИЕ: 4.024´a2 = 0.024; ®a = 0.0772.

ЗАДАЧА 11. (Д-О 17.28)

Рассчитать константу равновесия при 298 К для реакции.

H2 (газ) + D2 (газ) =2HD (газ)

Недостающие частоты валентных колебаний найти, пользуясь приближением гармонического осциллятора. Считать силовые константы и межатомные расстояния одинаковыми.

РЕШЕНИЕ.

Предварительные вычисления

Все силовые константы одинаковы (w2) = (w2) = (w2) =const, и отсюда следует

Пропорция частот колебаний связей:

n(HD): n(H2): n(D2) = (HD) - ½:  (H2) - ½: (D2) - ½ =

= [ (H2) / (HD)] ½: 1:  [(H2) / (D2)] ½ = (3/4) ½: 1: (1/2) ½ = 0.866: 1: 0.707

n(HD): n(H2): n(D2) =0.866: 1: 0.707

Отсюда определяются волновые числа колебаний:

n(H2) = 4405 см-1

n(HD) = 4405´0.866=3815 см-1

n(D2) = 4405´0.707 =3114 см-1

Далее получаются собственные частоты колебаний:

n0(H2) = 3´1010´4405 с-1=1.3215´1014 с-1

n0(HD) =3´1010´3815 с-1=1.1445´1014 с-1

n0(D2) = 3´1010´3114 с-1=9.342´1013 с-1

Колебательные кванты:

hn0(H2) =6.62´10-34 Дж´с ´ 1.3215´1014 с-1 =8.748´10-20 Дж

hn0(HD) =6.62´10-34´1.1445´1014 с-1 =7.577´10-20 Дж

hn0(D2) = 6.62´10-34´9.342´1013 с-1 =6.1844´10-20 Дж

Тепловой "квант" kT =1.38´10-23´298 Дж =4.112´10-21 Дж

Показатели больцмановских факторов для колебаний:

hn0(H2) / kT =8.748´10-20 Дж/4.112´10-21 Дж=21.27

hn0(HD) / kT =7.577´10-20 Дж/4.112´10-21 Дж=18.43

hn0(D2) / kT =6.1844´10-20 Дж/4.112´10-21 Дж=15.04

Все hn0 >> kT

Больцмановские факторы для колебаний практически нулевые:

exp(-21.27) @0

exp(-18.43) @0

exp(-15.04) @0

Колебательные статистические суммы все равны 1:

qV 0(HD) = [1-exp(-hn0(HD) / kT)] @1

qV 0(H2) = [1-exp(-hn0(H2) / kT)] @1

qV 0(D 2) = [1-exp(-hn0(D2) / kT)] @1

Колебательные суммы состояний равны 1 с большой точностью.

Приращение нулевой энергии (теплота реакции при T=0 K)

DrUo=(1/2NA) [2h0HDh0H2h0D2] ;

DrUo =0.5´6.023´1023´ [2´7.577-8.748-6.1844] ´10-20=3.0125´220=662.75 Дж.

Показатель фактора Больцмана для приращения нулевой энергии:

DrUo/ RT =662.75 Дж /(8.314´298) Дж=0.268

Фактор Больцмана для приращения нулевой энергии:

exp(-DrUo/ RT) = exp(-0.268) = 0.765

Константа равновесия

K= [M(HD) 2´M(H2) - 1´M(D2) - 1] 3/2´ [I(HD) 2´I(H2) - 1´I(D2) - 1] ´ [s(H2) ´s (D2)] [´[qV 0 (HD)] 2 ´ [qV 0(H2)] - 1´ [qV 0(D2)] - 1 ´exp(-DrUo/ RT) = [M(HD) 2M(H2) - 1´M(D2) - 1] 3/2´ [(HD) 2´(H2) - 1´(D2) - 1] ´ [2´2] ´exp(-DrUo/ RT)

K= [M(HD) 2´M(H2) - 1´M(D2) - 1] 3/2´ [ (HD) 2´ (H2) - 1´(D2) - 1] ´ [2´2] ´exp(-DrUo/ RT) =

K= [(1+2) 2 ´(1/2) ´ (1/4)] 3/2 ´ [(2/3) 2´2´1] ´ [2´2] ´ 0.765=

K= (9/8) 3/2´ (8/9) ´ 4´0.765=(9/8) 1/2´4´0.765=3.246

Резюме:

В этой задаче колебательные статистические суммы не играют роли. Они все равны 1. Из-за равенства структурных параметров играют роль лишь энергии остаточных колебаний, а также лишь отношения масс, приведённых масс молекул, а также чисел симметрии.

ЗАДАЧА 12.

Рассчитать константу равновесия для реакции газообразного водорода с газообразным тритием.

H2 (газ) + T2 (газ) =2HT (газ)

Недостающие частоты валентных колебаний найти, пользуясь приближением гармонического осциллятора. Считать силовые константы и межатомные расстояния одинаковыми.

ПРИМЕЧАНИЕ: Эта задача полностью подобна предыдущей.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно