Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Электроснабжение сельского населенного пункта

Тип Реферат
Предмет Физика
Просмотров
1458
Размер файла
283 б
Поделиться

Ознакомительный фрагмент работы:

Электроснабжение сельского населенного пункта

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

БРЯНСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ

КАФЕДРА СИСТЕМ ЭНЕРГООБЕСПЕЧЕНИЯ

Курсовой проект

по дисциплине: Электроснабжение сельского хозяйства

на тему:

Электроснабжение сельского населенного пункта

Брянск 2009

Содержание

1. Введение

2. Исходные данные

3. Расчёт электрических нагрузок населённого пункта

4. Определение места расположения трансформаторной подстанции. Выбор конфигурации сети 0,38 кВ. Определение координат центра электрических нагрузок

5. Определение электрических нагрузок сети 0,38 кВ

6. Определение числа и мощности трансформаторов на подстанции

7. Выбор типа подстанции

8. Определение места расположения распределительной подстанции. Конфигурация сети высокого напряжения и определение величины высокого напряжения

9. Определение нагрузок в сети высокого напряжения

10 Расчёт сечения проводов сети высокого напряжения

11. Определение потерь напряжения в высоковольтной сети и трансформаторе

12. Определение потерь мощности и энергии в сети высокого напряжения и трансформаторе

13. Определение допустимой потери напряжения в сети 0,38 кВ

14. Определение сечения проводов и фактических потерь напряжения, мощности и энергии в сетях 0,38 кВ

15 Расчёт сети по потере напряжения при пуске электродвигателя

16. Расчёт токов короткого замыкания

17. Выбор и проверка аппаратуры высокого напряжения ячейки питающей линии

18. Выбор и проверка высоковольтной и низковольтной аппаратуры на подстанции

19. Выбор устройств от перенапряжений

20. Расчёт контура заземления подстанции

21. Определение себестоимости распределения электроэнергии

Список литературы

1. Введение

Еще в первые месяцы после Великой Октябрьской социалистической революции В.И. Лениным была сформулирована задача о необходимости обратить особое внимание на электрификацию промышленности и транспорта и применение электричества к земледелию. Проблема электрификации всех отраслей народного хозяйства, а, следовательно, и электроэнергетики начиная с конца XIX века стояла, достаточно остро во всех странах в связи с высокими технико-экономическими показателями электрической энергии, легкостью ее преобразования в другие виды энергии и простотой передачи на расстояние. К началу первой мировой войны (1914 г.) электроэнергетическая база ведущих мировых стран развивалась весьма быстрыми темпами, но царская Россия, несмотря на огромные запасы топлива, и гидроресурсов, и в этой ведущей отрасли народного хозяйства заметно отставала от других капиталистических стран по установленной мощности на электростанциях и по производству электрической энергии.

В настоящее время развитие сельского электроснабжения в основном пойдет по линии развития существующих и строительства новых сетей, улучшения качества электроэнергии, поставляемой сельским потребителям, и особенно повышения надежности электроснабжения. Одновременно, конечно, будет продолжаться процесс электрификации сельских районов, удаленных от мощных энергосистем, путем строительства укрупненных колхозных и межколхозных электростанций с использованием дизельного топлива, а также гидроэнергии малых и средних водотоков существенно увеличиваются.

Следует подчеркнуть, что в настоящее время степень загруженности существующих сельских электрических сетей и потребительских подстанций для подавляющего большинства территории нашей страны невелика, и важной задачей, разрешение которой способно повысить рентабельность сельского электроснабжения - является широкое внедрение электроэнергии в производственные процессы сельского хозяйства и в быт сельского, населения.

2. Исходные данные

п.п.

Наименованиешифр

Дневной

максимум

Вечерний

максимум

Рд,

кВт

Qд,

квар

Sд,

кВА

Рв,

кВт

Qв,

квар

Sв,

кВА

ТП-1
1Кормоцех птицефермы на 25-30 тыс. кур158252032,0110712,2
2Прачечная производительностью 1,0 т белья/смену565251529,15251529,15
3Пункт технического обслуживания машин и оборудования на фермах37110712,2546,4
4Комбикормовый цех производительностью 50 т/смену196190160248,39190160248,39
5Административное здание (контора колхоза-совхоза) на 35-50 рабочих мест519251830,810010
ТП-2
6Птичник на 8 тыс. молодняка155251227,73251227,73
7Гречерушка352323,6101
8Зернохранилище с передвижными механизмами емкостью 500 т311101014,14535,83
9Коровник привязного содержания механизированной уборки навоза на 200 коров с электроводонагревателем на 200 коров107151319,84151319,84
10Баня на 5 мест559323,6303
ТП-3
11Крупорушка350121015,62101
12Площадка по откорму КРС на 6000 голов36155140208,869080120,41
13Кумысная ферма на 100 кобылиц76251529,15301533,54
14Прачечная производительностью 0,5 т белья/смену564201323,85201323,85
15Инкубаторий на 4 инкубатора1673003030030
ТП-4
16Хлебопекарня производительностью 3 т/сутки356546,4546,4
17Ферма выращивания уток на 15 тыс. утят60452049,24452049,24
18Коровник привязного содержания механизированной уборки навоза на 100 коров104445,65445,65
19Коровник привязного содержания механизированной уборки навоза на 200 коров с электроводонагревателем на 100 коров1069812,049812,04
20Ферма выращивания уток на 30 тыс. утят61753080,77753080,77
ТП-5
21Овцеводческая ферма с полным оборотом стада на 5000 овцематок66240180300240180300
22Оборудование для гранулирования комбикормов ОГК-3179555074,33555074,33
23Приемный пункт молокозавода мощностью 30 т/смену355656088,45656088,45
24Родительское отделение на 144 мест1262002020020
25Столярный цех341151018,02101
ТП-6
26Столовая с электронагревательным оборудованием на 75 мест542351538,0715515,81
27Свинарник-маточник на 100 маток с навозоуборочным транспортером с теплогенератором14286108610
28Столовая с электронагревательным оборудованием и с электроплитой на 50 мест545502053,85201022,36
29Помещение для ремонтного и откормочного молодняка на 170-180 голов113101303
30Детские ясли-сад на 25 мест512404303
31Птичник на 8 тыс. молодняка155251227,73251227,73
32Гречерушка352323,6101
33Сельский жилой дом (квартира) с плитой на газе, жидком или твердом топливе6030,70,320,7620,752,13

3. Расчёт электрических нагрузок населённого пункта

Расчёт нагрузки, потребляемой жилыми домами, рассчитывается методом коэффициента одновремённости по формулам

(3.1)

(3.2)


где n – количество домов;

ко – коэффициент одновремённости;

Р – активная мощность одного дома, кВт;

Q – реактивная мощность одного дома, квар.

По формулам (3.1) и (3.2) рассчитываются активные и реактивные нагрузки для дневного и вечернего максимумов

Pд=0,26×96×0,7=17,471 кВт,

Qд=0,26×96×0,32=7,987 кВАр,

Pв=0,26×96×2=49,92 кВт,

Qв=0,26×96×0,75=18,719 кВАр.

Для освещения улицы в тёмное время суток принимаются светильники марки СЗПР-250 с лампами типа ДРЛ без компенсации реактивной мощности (cos(φ)=0,7).

Мощность уличного освещения определяется по формулам

(3.3)

(3.4)

где Руд – удельная активная мощность, Вт/м;

L – длина улицы, м;

tgφ – коэффициент реактивной мощности.

Pу.о.=5,5×1440×10-3=7,919 кВт,

Qу.о.=7,92×1,02=8,08 кВАр.

Для освещения хозяйственных построек в тёмное время суток принимаются светильники с лампами накаливания (cosφ = 0,95), согласно примечанию 5 табл.2 [1] расчётная нагрузка принимается из расчёта 3 Вт на погонный метр периметра хозяйственного двора.

Мощность, необходимая для освещения хозяйственных дворов определяется по формулам

(3.5)

(3.6)

Где П – периметр приусадебного участка, м;

Руд.о – удельная мощность освещения, Вт/м.

Pосв=0,26×96×3×120×10-3=8,985 кВт,

Qосв=8,985×1.02=9,165 кВАр.

Для определения расчётного вечернего максимума активной и реактивной мощностей населённого пункта с учётом нагрузок уличного освещения и освещения приусадебных участков необходимо просуммировать данные нагрузки. Так как суммируемые нагрузки различаются по величине более чем в 4 раза, то суммирование ведётся методом надбавок по формулам

(3.7);

(3.8);

Pв.с.=49,92+7,92+2,96=60,805 кВт,

Qв.с.=18,72+8,08+3,024=29,824 кВАр

Полная потребляемая мощность населённого пункта для дневного и вечернего максимумов определяется по формуле


(3.9);

4. Определение места расположения трансформаторной подстанции. Выбор конфигурации сети 0,38 кВ. Определение координат центра электрических нагрузок

Потребительские трансформаторные подстанции следует располагать в центре электрических нагрузок. Если нет возможности установить трансформаторную подстанцию в расчетном месте, то ее необходимо установить в том месте, которое максимально приближено к центру электрических нагрузок.

Координаты центра электрических нагрузок определяются по формулам

(4.1),

(4.2),

где Si – полная расчётная мощность на вводе i-го потребителя, кВА;

хi уi – координаты i-ro потребителя.

Координаты потребителей низковольтной сети заносятся в табл. 4.1

Таблица 4.1 - Координаты потребителей низковольтной сети

х417385135496391191500261
у8025042549135448747593

X=(15878,886+3850+7269,972+496+1564+5296,592+1802,775+200,885)/139,036= =261,507 м

Y=(3046,309+3046,309+3046,309+3046,309+3046,309+3046,309+3046,309+61,574)//139,036=328,182

Подстанция №6 переносится в вершину квадрата с координатами х=261,507 у=328,182. Конфигурация сети приведена на рисунок 4.1

Рисунок 6.1 - Конфигурация сети 0,38 кВ

5. Определение электрических нагрузок сети 0,38 кВ

Определение нагрузок производится для каждого участка сети. Если расчетные нагрузки отличаются по величине не более чем в четыре раза, то их суммирование ведется методом коэффициента одновременности, в противном случае суммирование нагрузок ведется методом надбавок по формулам:


где Рmах;Qmaxнаибольшие из суммируемых нагрузок, кВт, квар;

ΔPi, Δ Qiнадбавки от i-x нагрузок, кВт, квар.

Расчёт ведётся для первого участка, остальные расчёты ведутся аналогично и результаты приведены в таблицу 5.1.

P =3+0,6=3,6 кВт;

Q=2+0=2 кВАр;

P=3+0,6=3,6 кВт;

Q=0+0=0 кВАр;

Таблица 5.1 - Расчёт нагрузок сети 0,38 кВ

Участок сетиРд, кВтQд, кварSд, кВАРв, кВтQв, кварSв, кВА
ТП-6 - 3523,624,1183,603,6
352 - 113101303
ТП-6 - 51227,41229,91226,81229,363
512 - 155251227,73251227,73
ТП-6 - 14254,823,659,66524,813,628,284
142 - 545502053,851201022,36
ТП-6 - 54235,415,238,52516,25,417,076
542 - 6030,70,320,76920,752,136

Суммирование нагрузок на ТП1-ТП6 ведётся методом надбавок или коэффициента одновремённости аналогично и результаты расчётов заносятся в таблицу 5.2


Таблица 5.2- Расчёт нагрузок на ТП

Номер ТПРд, кВтQд, кварSд, кВАРв, кВтQв, кварSв, кВА
ТП1245,8198,6316,005222,2176,5283,769
ТП2226,2629,4228,162221,7822,58222,926
ТП3212,6164,4268,749144,498,1174,57
ТП4118,653129,903118,653129,903
ТП5371,4255,8450,967362,3249,5439,899
ТП6400,8842,3403,10558,2625,163,436

6. Определение числа и мощности трансформаторов на подстанции

Для потребителей II и III категории в зависимости от величины расчетной нагрузки могут применяться трансформаторные подстанции с одним или двумя трансформаторами. С учетом перспективы развития (согласно заданию) выбирается коэффициент роста нагрузок трансформаторной подстанции (приложение I таблицы 8 [1]).

Расчетная нагрузка с учетом перспективы развития определяется по формуле

(6.1)

где кр- коэффициент роста нагрузок.

Мощность трансформатора выбирается по таблицам 22 приложения 1 [1] «Интервалы роста нагрузок для выбора трансформаторов», исходя из условия,

Где Sэн – нижний экономический интервал;

Sэв – верхний экономический интервал.

Выбранный трансформатор проверяется по коэффициенту систематических перегрузок согласно приложения 1 таблицы 26 [1].

Выбранный трансформатор проверяется по коэффициенту систематических перегрузок

Технические данные выбранного трансформатора заносятся в таблицу 6.1

Таблица 6.1 - Технические данные трансформатора

Тип

Номинальная мощность,

кВА

Сочетание напряжений, кВ

Потери, кВт

Напряжение к.з. %Ток х.х., %Схема соединений
В.Н.Н.Н.х.хк.з.
ТМ-400400350,41,355,56,52,1Y/Yн

7. Выбор типа подстанции

Для электроснабжения сельских потребителей на напряжении 0,38/0,22 кВ непосредственно возле центров потребления электроэнергии сооружают трансформаторные пункты или комплектные трансформаторные подстанции на 35, 6-10/0,38-0,22 кВ. Обычно мощности трансформаторных пунктов не очень значительны, и иногда их размещают на деревянных мачтовых конструкциях. Комплектные трансформаторные подстанции устанавливают на специальных железобетонных опорах. Трансформаторные пункты при использовании дерева монтируют на АП-образных опорах. Они имеют невысокую стоимость, и их сооружают в короткий срок, причем для их сооружения используют местные строительные материалы.

Комплектные подстанции полностью изготавливают на заводах, а на месте установки их только монтируют на соответствующих железобетонных опорах или фундаментах. Эксплуатация таких трансформаторных пунктов и комплектных подстанций очень проста, что обусловило их широкое применение в практике вообще и, особенно в сельской энергетике. Их применяют также на окраинах городов, а иногда и в качестве цеховых пунктов электроснабжения на заводах и фабриках. На этих подстанциях имеется вся необходимая аппаратура для присоединения к линии 35, 6-10 кВ (разъединитель, вентильные разрядники, предохранители), силовой трансформатор мощностью от 25 до 630 кВА и распределительное устройство сети 0,38/0,22 кВ, смонтированное в герметизированном металлическом ящике. На конструкции подстанции крепят необходимое число изоляторов для отходящих воздушных линий 0,38/0,22 кВ. К установке принимается комплектная трансформаторная подстанция киоскового типа с силовым трансформатором мощностью 400 кВА.

8. Определение места расположения распределительной подстанции. Конфигурация сети высокого напряжения и определение величины высокогонапряжения

Распределительные, как и потребительские трансформаторные подстанции следует располагать в месте, которое максимально приближено к центру электрических нагрузок. Координаты центра электрических нагрузок определяются аналогично сети 0,38 кВ.

Таблица 8.1 - Координаты потребителей сети высокого напряжения

х1,586,588,58,5
у576553

Если рекомендуемое в задание место расположения трансформаторной подстанции имеет координаты, которые удалены от центра электрических нагрузок, то тогда трансформаторную подстанцию необходимо перенести в вершину квадрата, которая располагается ближе всего к центру электрических нагрузок.

Х=(474+1825,29+1746,86+1039,22+3833,22+3426,39)/330,81=6,87 км

Y=(1580,02+1597,13+1612,49+649,51+2254,83+1209,31)/330,81=4,95 км

Районная трансформаторная подстанция устанавливается в точке С. Конфигурация сети высокого напряжения приведена на рисунке 8.1

Рисунок 8.1 - Конфигурация сети высокого напряжения.

Оптимальное напряжение определяется по формуле

где Lэк – эквивалентная длина линии, км;

Р1– расчётная мощность на головном участке, кВт.

Эквивалентная длина участка определяется по формуле

Где Li – длина i-го участка линии, км;

Рi– мощность i-го участка линии, кВт.

Эквивалентная длина составит

Lэк=5,385+0,000771×(638,68+452,519+383,27+1253,338+185,699+801,759)= =8,249 км

кВ.

9. Определение нагрузок в сети высокого напряжения

Нагрузки определяются для каждого участка сети. Если расчётные нагрузки отличаются по величине не более чем в четыре раза, то их суммирование ведётся методом коэффициента одновремённости по формулам

где ко – коэффициент одновремённости;

в противном случае суммирование нагрузок ведется методом надбавок по формулам

,

,

Где Рmax; Qmax – наибольшие из суммируемых нагрузок, кВт, квар;

DРi; DQi – надбавки от i-х нагрузок, кВт, квар.

Расчёт ведётся для участка РТП-ТП1, результаты остальных расчётов показаны в таблицу 9.1

Pд=400,88+90+178+170+194+299=1331,88 кВт,

Qд=255,8+39,5+20,4+127+155+3,8=601,5 квар,

кВА

Pв=362,3+90+178+110+178+44=962,3 кВт,

Qв=249,5+39,5+15,1+74,5+139+17,2=534,8 квар,

кВА

Таблица 9.1 - Результаты суммирования нагрузок в сети высокого напряжения

Номер

участка

Рд,

кВт

Qд,

квар

Sд,

кВА

Рв,

кВт

Qв,

квар

Sв,

кВА

РТП-ТП41331,88601,51461,405962,3534,81100,923
ТП4-ТП2593,8346687,251510,2266,1575,424
ТП2-ТП3415,8325,6528,114332,2251416,362
ТП3-ТП1245,8198,6316,005222,2176,5283,769
ТП4-ТП5699,88459,8837,405653,3443,5789,615
ТП5-ТП6400,8842,3403,10558,2625,163,436

10. Расчёт сечения проводов сети высокого напряжения

Расчёт сечения проводов сети высокого напряжения производится по экономической плотности тока

,

Где Iр – расчётный ток участка сети, А;

jэк – экономическая плотность тока, А/мм2

Продолжительность использования максимума нагрузки Тм приводится в табл.10 П.1[1].

Максимальный ток участка линии высокого напряжения определяется по формуле

,

Где Sp – полная расчетная мощность, кВА;

Uном – номинальное напряжение, кВ.

Расчёт сечения проводов ведётся для всех участков сети ТП1-ТП6, расчет сечения проводов на остальных участках ведется аналогично, и результаты расчётов сводятся в таблицу10.1

Таблица 10.1 - Расчёт сечения проводов в сети высокого напряжения

Участок сетиSр, кВАРр, кВтIр, АТм, часjэк., А/мм2Fэк, мм2Марка провода
РТП-ТП41461,41331,8824,10634001,121,915AC-25
ТП4-ТП2687,25593,811,33634001,110,306AC-16
ТП2-ТП3528,11415,88,71134001,17,919AC-16
ТП3-ТП1316245,85,21232001,14,738AC-16
ТП4-ТП5837,4699,8813,81334001,112,557AC-16
ТП5-ТП6403,1400,886,64934001,16,045AC-16

11. Определение потерь напряжения в высоковольтной сети итрансформаторе

Потери напряжения на участках линии высокого напряжения в вольтах определяются по формуле

где Р – активная мощность участка, кВт;

Q – реактивная мощность участка, квар;

rо– удельное активное сопротивление провода, Ом/км (табл.18 П1 [1]);

хо – удельное реактивное сопротивление провода, Ом/км (табл.19 П.1[1]);

L – длина участка, км.

Потеря напряжения на участке сети на участке сети высокого напряжения в процентах от номинального, определяется по формуле

Расчёт ведётся для всех участков ТП1-ТП6 и сводятся в таблицу 11.1

Таблица 11.1-Потери напряжения в сети высокого напряжения

Участок сети

Марка

провода

Р, кВтrо, Ом/кмQ, квархо, Ом/кмL, кмDU, ВDU,%
РТП-ТП4AC-251331,881,139601,50,455,38551,1140,146
ТП4-ТП2AC-16593,81,83460,45234,9860,099
ТП2-ТП3AC-16415,81,8325,60,451,80225,570,073
ТП3-ТП1AC-16245,81,8198,60,455,09915,1940,043
ТП4-ТП5AC-16699,881,8459,80,450,541,9050,119
ТП5-ТП6AC-16400,881,842,30,45221,160,06

Потери напряжения в трансформаторе определяются по формуле

,

где Smax– расчётная мощность, кВА;

Sтр – мощность трансформатора, кВА;

Uа – активная составляющая напряжения короткого замыкания, %;

Uр – реактивная составляющая напряжения короткого замыкания, %.

активная составляющая напряжения короткого замыкания определяется по формуле

,

где DРк.з. –потери короткого замыкания в трансформаторе, кВт.

реактивная составляющая напряжения короткого замыкания определяется по формуле

,

где Uк.з. – напряжение короткого замыкания, %.

Коэффициент мощности определяется по формуле

,

где Рр –расчётная активная мощность, кВт;

Sр – расчетная полная мощность, кВА.

Uа=0,09 %,

Up=6,499 %,

0,994,

sin(j)=0,104

(503,881/400)×(0,089+0,682)=0,972 %

12. Определение потерь мощности и энергии в сети высокого напряжения и трансформаторе

Правильный выбор электрооборудования, определение рациональных режимов его работы, выбор самого экономичного способа повышения коэффициента мощности дают возможность снизить потери мощности и энергии в сети и тем самым определить наиболее экономичный режим в процессе эксплуатации.

Потери мощности в линии определяются по формуле

где I – расчётный ток участка, А;

rо – удельное активное сопротивление участка, Ом/км;

L – длина участка, км.

Энергии, теряемая на участке линии, определяется по формуле

где t - время потерь, час.

Время потерь определяется по формуле


где Тм– число часов использования максимума нагрузки, (П.1 таблица 10), час.

Расчёт ведётся для всех участков, результаты расчётов заносятся в таблицу 12.1

Таблица 12.1- Определение потерь мощности и энергии в сети высокого напряжения

Участок сетиI, Аro, Ом/кмL, кмDР, кВтТм, час

t,

час

DW,

кВт·ч

РТП-ТП424,1061,1395,3859,38834001885,99217706,982
ТП4-ТП211,3361,820,77134001885,9921454,337
ТП2-ТП38,7111,81,8020,4134001885,992774,108
ТП3-ТП15,2121,85,0990,41532001726,911717,811
ТП4-ТП513,8131,80,50,28634001885,992539,815
ТП5-ТП66,6491,820,26534001885,992500,347
Итого:16,78611,53721693,403

Потеря мощности и энергии, теряемые в высоковольтных линиях, в процентах от потребляемой определяется по формуле

,

,

∆P%=0,866 %,

∆W%=0,479 %.

Потери мощности и энергии в высоковольтной сети не должны превышать 10%.

Потери мощности в трансформаторе определяются по формуле

где DРх.х – потери холостого хода трансформатора, кВт (табл.28 П.1 [1]);

DРк.з – потери в меди трансформатора, кВт (табл.28 П.1 [1]);

b - коэффициент загрузки трансформатора.

Потери энергии в трансформаторе определяются по формуле

,

∆Pтр= 1,35+1,586×5,5= 10,077 кВт,

∆Wтр= 1,35×8760+1,586×5,5×1885,992= 13720,72 кВт×ч.

13. Определение допустимой потери напряжения в сети 0,38 кВ

Допустимая потеря напряжения в сети 0,38 кВ определяется для правильного выбора сечения проводов линии 0,38 кВ.

В режиме минимальной нагрузки проверяется отклонение напряжения, у ближайшего потребителя, которое не должно превышать +5%. В максимальном режиме отклонение напряжения у наиболее удалённого потребителя должно быть не более минус 5%. На районной подстанции осуществляется режим встречного регулирования dU100=5%; dU25=2%.

В минимальном режиме определяется регулируемая надбавка трансформатора

где - надбавка на шинах РТП в минимальном режиме, %;

- потеря напряжения в линии 35 кВ в минимальном режиме, %;

- потеря напряжения в трансформаторе в минимальном режиме, %;

- конструктивная надбавка трансформатора, %.

Допустимая потеря напряжения в линии 0,38 кВ в максимальном режиме определяется по формуле

,

Vрег=5-1+0,081+0,243-5=-0,675 %, принимается стандартная регулируемая надбавка равная 0 %,

∆Uдоп=9-0,326-0,972+5-5-(-5)+(0)=12,701 %, что составляет 48,26 В.

14. Определение сечения проводов и фактических потерь напряжения, мощности и энергии в сетях 0,38 кВ

Сечения проводов ВЛ-0,38 кВ определяются по экономическим интервалам, или по допустимой потере напряжения по формулам, соответствующим конфигурации сети.

Сечения проводов магистрали по допустимой потере напряжения определяются по формуле

где g - удельная проводимость провода, (для алюминия g=32 Ом м /мм2);

DUдоп.а – активная составляющая допустимой потери напряжения, В;

Рi– активная мощность i-го участка сети, Вт;

Li – длина i-го участка сети, м;

Uном – номинальное напряжение сети, В.

Активная составляющая допустимой потери напряжения определяется по формуле

,

где DUр – реактивная составляющая допустимой потери напряжения, В.

реактивная составляющая допустимой потери напряжения определяется по формуле

,

где Qi – реактивная мощность i-го участка сети, квар;

Li – длина i-го участка сети, км;

хо– удельное индуктивное сопротивление провода, Ом/км;

Uном – номинальное напряжение, кВ.

Участки принимаются для последовательной цепи от источника до расчетной точки.

Мощность конденсаторной батареи определяется по формуле

,

где Рр – расчетная мощность кВт;

– коэффициент реактивной мощности до компенсации;

– оптимальный коэффициент реактивной мощности.

Расчетная реактивная мощность после установки поперечной компенсации определяется по формуле

,

где Qp.дк. – расчетная реактивная мощность до компенсации.

Линия №1 ТП-6 - 352 + 352 - 113

∆Up= (0,299/0.38)×(2×0,025+0×0,016492)=0,039 В,

∆Uд.а.=48,259-0,039=48,22 В,

106492/586361,599=0,181 мм2.

Принимается алюминиевый провод сечением 16 мм2 марки AC-16.

∆Uф= ((3,6×1,8+2×0,299×25)/380+((1×1,8+0×0,299×16,492)/380)=0,543 В,

∆U%ф= (0,543/380)×100=0,143 %.

Линия №2 ТП-6 - 512 + 512 - 155

∆Up= (0,299/0.38)×(12×0,1822+12×0,240185)=4,001 В,

∆Uд.а= 48,259-4,001=44,258 В,

10996925/538182,757=20,433 мм2.

Принимается алюминиевый провод сечением 25 мм2 марки AC-25.

∆Uф=((27,399×1,139+12×0,299×182,2)/380+((25×1,139+12×0,299×240,185)/ /380)=36,992 В,

∆U%ф= (36,992/380)×100=9,734 %.


Линия №3 ТП-6 - 142 + 142 - 545

∆Up= (0,299/0.38)×(23,6×0,275181+20×0,305163)=9,945 В,

∆Uд.а =48,259-9,945=38,314 В,

30338154/465904,953=65,116 мм2.

Принимается алюминиевый провод сечением 70 мм2 марки AC-70.

∆Uф=((54,799×0,411+23,6×0,299×275,181)/380+((50×0,411+20×0,299×305,163)/ /380)=42,838 В,

∆U%ф= (42,838/380)×100=11,273 %.

Линия №4 ТП-6 - 542 + 542 - 603

∆Up= (0,299/0.38)×(15,199×0,428122+0,32×0,15654)=5,177 В,

∆Uд.а =48,259-5,177=43,082 В,

15265120/523889,05=29,138 мм2.

Принимается алюминиевый провод сечением 35 мм2 марки AC-35.

∆Uд.а=((35,399×0,829+15,199×0,299×428,122)/380+((0,699×0,829+0,32×0,299×156,54)//380)=38,519 В,

∆U%ф= (38,519/380)×100=10,136 %.

Таблица 14. - Потери напряжения на элементах сети

Элемент сетиОтклонение напряжения, %
при 100% нагрузкепри 25% нагрузке
Шины 35 кВ91
Линия 35 кВ-0,326-0,081

Трансформатор 35/0,4 кВ:

потери напряжения

надбавка конструктивная

надбавка регулируемая

-0,972

+5

0

-0,243

+2.5

0

Линия 0,38 кВ-10,136-
Допустимое отклонение напряжения-5+5

Рисунок 14.1 - Диаграмма отклонения напряжения

Потери мощности и энергии в линиях 0,38 кВ определяются аналогично потерям мощности и энергии в высоковольтной линии, результаты расчётов указываются в таблице 14.2

Таблица 14.2 - Потери мощности и энергии в сети 0,38 кВ

Участок

сети

S,

кВА

Р,

кВт

I, А

ro,

Ом/км

L, км

DР,

кВт

Тм,

час

t, час

DW,

кВтч

ТП-6 - 3524,1183,66,2571,80,0250,0051300565,162,987
352 - 113111,5191,80,01649201300565,160,116
ТП-6 - 51229,91227,39945,4481,1390,18221,28722001036,6231334,258
512 - 15527,732542,1331,1390,2401851,45822001036,6231511,669
ТП-6 - 14259,66554,79990,6550,4110,2751812,79528001429,7723996,611
142 - 54553,8515081,8210,4110,3051632,52522001036,6232617,626
ТП-6 - 54238,52535,39958,5340,8290,4281223,65222001036,6233786,325
542 - 6030,7690,6991,1690,8290,1565401300565,160,301
Итого1,62811,72413249,897

15. Расчёт сети по потере напряжения при пуске электродвигателя

Когда в сети работают короткозамкнутые асинхронные электродвигатели большой мощности, то после того, как сеть рассчитана по допустимым отклонения напряжения, её проверяют на кратковременные колебания напряжения при пуске электродвигателей. Известно, что пусковой ток асинхронного короткозамкнутого электродвигателя в 4…7 раз больше его номинального значения. Вследствие этого потеря напряжения в сети при пуске может в несколько раз превышать потерю напряжения на двигателе будет значительно ниже, чем в обычном режиме.

Однако в большинстве случаев электродвигатели запускают не слишком часто (несколько раз в час), продолжительность разбега двигателя невелика – до 10 с.

При пуске электродвигателей допускаются значительно большие понижения напряжения, чем при нормальной работе. Требуется только чтобы пусковой момент двигателя, был достаточен для преодоления момента сопротивления и, следовательно, двигатель мог нормально развернуться.

Потребитель 142 (цех консервов) имеет привод компрессора с электродвигателем 4А112М2Y3

Паспортные данные электродвигателя

Рном=7,5 кВт cosjном=0,88 КПД=0,875

lmax=2,799 lmin=1,8 lпуск=2

lкр=2 Rк.п=0,076 Хк.п=0,149

Sк=17 кI=7,5lтр=1,199


Допустимое отклонение напряжения на зажимах двигателя определяются по формуле

,

dUдоп.д.=-(1-0,851)×100=-14,853 %

Параметры сети от подстанции до места установки электродвигателя определяются по формулам

,

,

rл=0,411×0,275=0,113 Ом,

xл=0,299×0,275=0,082 Ом.

Фактическое отклонение напряжения на зажимах электродвигателя определяется по формуле

,

где δUд.д.пуск - отклонение напряжения на зажимах электродвигателя до пуска, %;

DUтр.пуск - потери напряжения в трансформаторе при пуске электродвигателя, %;

ΔUЛ.0,38 пускпотери напряжения в линии 0,38 кВ при пуске электродвигателя, %.

Потеря напряжения в трансформаторе при пуске электродвигателя определяется по формуле

.

Мощность двигателя при пуске определяется по формуле

,

где КI – кратность пускового тока.

Коэффициент реактивной мощности при пуске определяется по формуле

.

Потеря напряжения в линии 0,38 кВ при пуске определяется

.

Заключением об успешности пуска электродвигателя является условие

Пусковой коэффициент реактивной мощности равен

Мощность асинхронного двигателя при пуске равна

Pд.пуск= (25,688×0,724)/0,77=24,186 кВт.

Потери напряжения в трансформаторе при пуске асинхронного электродвигателя равны

∆Uл 0,38пуск= (24,186×12,751)/400=0,771 %.

Потери напряжения в линии 0,38 кВ при пуске двигателя равны

∆Uл 0,38пуск= ((24186,873×(0,113+0,16))/(144400))×100%=4,592 %

Отклонение напряжения на зажимах электродвигателя до пуска

∆Uл 0,38пуск=11,273 %

Фактическое отклонение напряжения на зажимах асинхронного электродвигателя при пуске составит

δUд.пус.ф.=-16,637 %.

Пуск двигателя состоится.

16. Расчёт токов короткого замыкания

По электрической сети и электрооборудованию в нормальном режиме работы протекают токи, допустимые для данной установки. При нарушении электрической плотности изоляции проводов или оборудования в электрической сети внезапно возникает аварийный режим короткого замыкания, вызывающий резкое увеличение токов, которые достигают огромных значений.

Значительные по величине токи короткою замыкания представляют большую опасность для элементов электрической сои и оборудования, так как они вызывают чрезмерный нагрев токоведущих частей и создают большие механические усилия. При выборе оборудования необходимо учесть эти два фактора для конкретной точки сети. Для расчета и согласования релейной защиты также требуются токи короткого замыкания.

Для расчетов токов короткого замыкания составляется расчетная схема и схема замещения которые представлены на рисунке 16.1 и рисунке 16.2.

Рисунок 16.1 - Расчётная схема для определения токов короткого замыкания.


Рисунок 16.2 - Схема замещения для определения токов короткого замыкания.

Расчет токов короткого замыкания и высоковольтной сети

Токи короткого замыкания в высоковольтной сети определяются в следующих точках: на шинах распределительной подстанции, на шинах высокого напряжения наиболее удаленной ТП и на шинах высокого напряжения расчетной ТП-6.

Токи короткого замыкания определяются методом относительных единиц. За основное напряжение принимается напряжение, равное Uосн.=1,05Uном

Ток трехфазного короткого замыкания определяется по формуле

,

где Z – полное сопротивление до точки короткого замыкания, Ом.

,


где rл – активное сопротивление провода до точки короткого замыкания, Ом;

хл – реактивное сопротивление провода до точки короткого замыкания, Ом;

хсист – реактивное сопротивление системы, Ом.

,

Sк– мощность короткого замыкания на шинах высоковольтного напряжения, мВА.

Ток двухфазного короткого замыкания определяется по формуле

.

Ударный ток определяется по формуле

,

где куд – ударный коэффициент, который определяется по формуле

,

где Та – постоянная времени затухания определяется по формуле

Реактивние сопротивление системы Xсист = 5,923 Ом

В.В. линия № 1

Длина линии 5,385 км

Сопротивление линии Roл = 6,139 Ом

Сопротивление линии Xoл = 2,423 Ом

В.В. линия № 2

Длина линии 2 км

Сопротивление линии Roл = 3,6 Ом

Сопротивление линии Xoл = 0,9 Ом

В.В. линия № 3

Длина линии 1,802 км

Сопротивление линии Roл = 3,244 Ом

Сопротивление линии Xoл = 0,811 Ом

В.В. линия № 4

Длина линии 5,099 км

Сопротивление линии Roл = 9,178 Ом

Сопротивление линии Xoл = 2,294 Ом

В.В. линия № 5

Длина линии 0,5 км

Сопротивление линии Roл = 0,9 Ом

Сопротивление линии Xoл = 0,225 Ом

В.В. линия № 6

Длина линии 2 км

Сопротивление линии Roл = 3,6 Ом

Сопротивление линии Xoл = 0,9 Ом

Н.В. линия № 1

Длина линии 41,492 м

Сопротивление линии Roл = 0,074 Ом

Сопротивление линии Xoл = 0,012 Ом

Н.В. линия № 2

Длина линии 422,385 м

Сопротивление линии Roл = 0,481 Ом

Сопротивление линии Xoл = 0,126 Ом

Н.В. линия № 3

Длина линии 580,345 м

Сопротивление линии Roл = 0,239 Ом

Сопротивление линии Xoл = 0,174 Ом

Н.В. линия № 4

Длина линии 584,663 м

Сопротивление линии Roл = 0,485 Ом

Сопротивление линии Xoл = 0,175 Ом

Сопротивление трансформатора Rтр = 0,002 Ом

Сопротивление трансформатора Xтр = 0,171 Ом

Расчёты ведутся для всех точек, результаты расчётов приведены в табл. 17.1

Расчет токов короткого замыкания в сети 0,38кВ

Токи короткого замыкания в сети 0,38 кВ определяются в следующих точках: на шинах 0,4 кВ ТП-6 и в конце каждой отходящей линии.

За основное напряжение принимается напряжение, равное Uосн=1,05Uном Ток трехфазного короткого замыкания определяется по формуле, приведенной выше. Полное сопротивление участка сети определяется по формуле

,

где хтр – реактивное сопротивление трансформатора, Ом;

rтр – активное сопротивление трансформатора, Ом.

Реактивное сопротивление трансформатора определяется по формуле


,

где Uк.р.% – реактивная составляющая тока короткого замыкания, %; Sном. –мощность трансформатора 35/0,4 кВА.

Активное сопротивление трансформатора определяется по формуле

,

где Uк.а.% – активная составляющая тока короткого замыкания, %;

Ток однофазного короткого замыкания определяется по формуле

где zтр /3 – полное сопротивление трансформатора току короткого замыкания на корпус, Ом, (табл. 29[1]);

zп – полное сопротивление петли фазного и пулевого провода, Ом.

где rФ– активное сопротивление фазного провода, Ом;

rN – активное сопротивление нулевого провода, Ом;

xФ– реактивное сопротивление фазного провода, Ом;

xN – реактивное сопротивление нулевого провода, Ом;

Расчёты ведутся для точек К4 и К5, результаты остальных расчётов приведены в таблице 16.1

Ik1(3)= 0,4/10,259 = 3,581

Ik1(2)= 0,866/3,581 = 3,102

Ik2(3)= 0,4/24,672 = 1,489

Ik2(2)= 0,866/1,489 = 1,289

Ik3(3)= 0,4/24,672 = 1,489

Ik3(2)= 0,866/1,489 = 1,289

Ik4(3)= 36,75/0,296 = 1,35

Ik4(2)= 0,866/1,35 = 1,169

Ik5(3)= 36,75/0,344 = 1,16

Ik5(2)= 0,866/1,16 = 1,005

Ik6(3)= 36,75/0,984 = 0,406

Ik6(2)= 0,866/0,406 = 0,352

Ik7(3)= 36,75/0,729 = 0,548

Ik7(2)= 0,866/0,548 = 0,474

Ik8(3)= 36,75/1,036 = 0,386

Ik8(2)= 0,866/0,386 = 0,334

Tak1 = 5,923/0 = 0

Kak1 = 1+exp(-0.01/0) = 1

iудk1 = 1.41*1*3,581 = 5,065

Tak2 = 9,471/3340,673 = 0,002

Kak2 = 1+exp(-0.01/0,002) = 1,029

iудk2 = 1.41*1,029*1,489 = 2,168

Tak3 = 9,471/3340,673 = 0,002

Kak3 = 1+exp(-0.01/0,002) = 1,029

iудk3 = 1.41*1,029*1,489 = 2,168

Tak4 = 0,171/0,747 = 0,228

Kak4 = 1+exp(-0.01/0,228) = 1,957

iудk4 = 1.41*1,957*1,35 = 3,737

Tak5 = 0,183/24,198 = 0,007

Kak5 = 1+exp(-0.01/0,007) = 1,267

iудk5 = 1.41*1,267*1,16 = 2,08

Tak6 = 0,297/151,944 = 0,001

Kak6 = 1+exp(-0.01/0,001) = 1,006

iудk6 = 1.41*1,006*0,406 = 0,578

Tak7 = 0,345/75,825 = 0,004

Kak7 = 1+exp(-0.01/0,004) = 1,111

iудk7 = 1.41*1,111*0,548 = 0,861

Tak8 = 0,346/153,122 = 0,002

Kak8 = 1+exp(-0.01/0,002) = 1,012

iудk8 = 1.41*1,012*0,386 = 0,552

Таблица 16.1- Результаты расчётов токов короткого замыкания

Точка к.з.r, Омх, ОмZ, омZп, ОмТаКудI(3)I(2)I(1)iуд
K-105,9235,9230013,5813,10205,065
K-210,6399,47114,24400,0021,0291,4891,28902,168
K-310,6399,47114,24400,0021,0291,4891,28902,168
K-40,0020,1710,17100,2281,9571,351,16903,737
K-50,0770,1830,1980,1510,0071,2671,161,0050,5612,08
K-60,4830,2970,5680,9950,0011,0060,4060,3520,1830,578
K-70,2410,3450,4210,5910,0041,1110,5480,4740,2710,861
K-80,4870,3460,5981,0310,0021,0120,3860,3340,1780,552

17. Выбор и проверка аппаратуры высокого напряжения ячейкипитающей линии

Согласно ПУЭ электрические аппараты выбирают по роду установки, номинальному току и напряжению, проверяют на динамическую и термическую устойчивость. Ячейка питающей линии представляет собой комплектное распределительное устройство наружной или внутренней установки. КРУН комплектуется двумя разъединителями с короткозамыкателями (QS) для создания видимого разрыва цепи при проведении профилактических и ремонтных работ обслуживающим или оперативным персоналом, выключателем нагрузки (QF) и комплектом трансформаторов тока (ТА), которые служат для питания приборов релейной защиты и приборов учёта электрической энергии. Однолинейная упрощённая схема КРУН представлена на рис.

Рисунок 17.1 - Однолинейная упрощённая схема КРУН.

Для выбора и проверки электрических аппаратов высокого напряжения целесообразно составить таблицу, куда вносятся исходные данные места установки аппарата и его каталожные данные.

Таблица 17.1 - Сравнение исходных данных места установки, с параметрами выключателя, разъединителя, трансформатора тока

Исходные данные места установки

Параметры

выключателя

Параметры

разъединителя

Параметры

Трансформатора

тока

Тип ВП-35Тип РНД(З)-35/1000Тип ТПОЛ-35
Uном = 35 кВ35 кВ35 кВ35 кВ
Iном =24,106 А0,4 А1000 А400 А
3,581 кА5 кА--
5,065 кА16 кА64 кА100 кА
6,3 кА25 кА1,6 кА

Как видно из таблицы 17.1 параметры всех выбранных аппаратов удовлетворяют предъявляемым требованиям.


18. Выбор и проверка высоковольтной и низковольтной аппаратуры на подстанции

Разъединитель QS1 выбирается по тем же условиям, что и разъединитель питающей линии:

тип РНД(З)-35/1000;

номинальный ток 1000 А;

номинальное напряжение 35 кВ;

амплитуда сквозного тока 64 кА;

ток термической стойкости 25 кА

Для защиты трансформатора с высокой стороны устанавливаются предохраните FU1 – FU3. Ток плавкой вставки предохранителя выбирается по условию

А.

Принимается предохранители типа ПК-16 с током плавкой вставки 16 А.

Шины 0,4 кВ подключаются к трансформатору через рубильник QS2 типа Р2315 с номинальным током 600А.

Трансформаторы тока ТА1-ТА3 типа ТК20 служат для питания счётчика активной энергии СА4-И672.

Линия уличного освещения защищается предохранителями FU4-FU6, типа НПН-2 с номинальным током плавкой вставки 16А, управление уличным освещением осуществляется магнитным пускателем КМ типа ПМЛ.

Выбор автоматических выключателей на отходящих линиях производится исходя из следующих условий

1. , кс.з = 1;

2. ;

3. ;

4. .

Линия №1 Максимальный ток – 6,257 А, ударный ток – 2,08 кА, двухфазный ток короткого замыкания – 1005,036 А, однофазный ток короткого замыкания – 561,452 А. К установке принимается автоматический выключатель АЕ2063 с током теплового расцепителя 8 А, током электромагнитного расцепителя 96, и током динамической стойкости 15 кА.

1. 8 А>6,257 А;

2. 15 кА>2,08 кА;

3. 1005,036/96=10,469;

4. 561,452/96=5,848

Линия №2 Максимальный ток – 45,448 А, ударный ток – 0,578 кА, двухфазный ток короткого замыкания – 352,013 А, однофазный ток короткого замыкания – 183,942 А. К установке принимается автоматический выключатель А3163 с номинальным током А, током теплового расцепителя 50 А, током электромагнитного расцепителя 500, и током динамической стойкости 15 кА.

1. 50 А>45,448 А;

2. 15 кА>0,578 кА;

3. 352,013/500=0,704;


Выбранный автоматический выключатель не удовлетворяет третьему условия. Дополнительно устанавливаем защитную приставку ЗТ-0,4 с током уставки от однофазного КЗ 125 А. Получаем коэффициент: 2,816

4. 183,942/500=0,367

Выбранный автоматический выключатель не удовлетворяет четвертому условия. Дополнительно устанавливаем защитную приставку ЗТ-0,4 с током уставки от однофазного КЗ 125 А. Получаем коэффициент: 1,471 Следовательно все условия выполняются

Линия №3 Максимальный ток – 90,655 А, ударный ток – 0,861 кА, двухфазный ток короткого замыкания – 474,812 А, однофазный ток короткого замыкания – 271,27 А. К установке принимается автоматический выключатель АЕ2056 с номинальным током А, током теплового расцепителя 100 А, током электромагнитного расцепителя 1200, и током динамической стойкости 15 кА.

1. 100 А>90,655 А;

2. 15 кА>0,861 кА;

3. 474,812/1200=0,395;

Выбранный автоматический выключатель не удовлетворяет третьему условия. Дополнительно устанавливаем защитную приставку ЗТ-0,4 с током уставки от однофазного КЗ 300 А. Получаем коэффициент: 1,582

4. 271,27/1200=0,226

Выбранный автоматический выключатель не удовлетворяет четвертому условия. Дополнительно устанавливаем защитную приставку ЗТ-0,4 с током уставки от однофазного КЗ 300 А. Получаем коэффициент: 0,904

Линия №4 Максимальный ток – 58,534 А, ударный ток – 0,552 кА, двухфазный ток короткого замыкания – 334,351 А, однофазный ток короткого замыкания – 178,793 А. К установке принимается автоматический выключатель АЕ2064 с номинальным током А, током теплового расцепителя 63 А, током электромагнитного расцепителя 756, и током динамической стойкости 15 кА.

1. 63 А>58,534 А;

2. 15 кА>0,552 кА;

3. 334,351/756=0,442;

Выбранный автоматический выключатель не удовлетворяет третьему условия. Дополнительно устанавливаем защитную приставку ЗТ-0,4 с током уставки от однофазного КЗ 189 А. Получаем коэффициент: 1,769

4. 178,793/756=0,236

Выбранный автоматический выключатель не удовлетворяет четвертому условия. Дополнительно устанавливаем защитную приставку ЗТ-0,4 с током уставки от однофазного КЗ 189 А. Получаем коэффициент: 0,945 Следовательно все условия выполняются

19. Выбор устройств от перенапряжений

Защиту подстанций напряжением 20 – 35 кВ выбирают в зависимости от их мощности. Если мощность подстанции менее 630 кВА, на каждой ее системе шин устанавливают комплект вентильных разрядников, расположенных возможно близко к трансформаторам и присоединенных к заземляющему контуру подстанции кратчайшим путем. Кроме того, на расстоянии 150 – 200 м от подстанции на всех подходящих воздушных линиях монтируют комплекты трубчатых разрядников РТ-1 или заменяющих их защитных искровых промежутков ПЗ-1 (при токах короткого замыкания, меньших нижнего предела, гасящегося трубчатыми разрядниками). Сопротивление заземления этих разрядников РТ-1 или промежутков ПЗ-1 должно быть не более 10 Ом.

На питающих линиях для защиты разомкнутых разъединителей или выключателей у приемных порталов или у вводов в закрытое распределительные устройства дополнительно устанавливают трубчатые разрядники РТ-2 или защитные промежутки ПЗ-2, присоединяя их к заземляющему контуру подстанции. Подстанции мощностью 630 кВ-А и больше защищают так же, но дополнительно все воздушные линии передачи, подходящие к этим подстанциям на расстояние 150 – 200 м, При этом трубчатые разрядники РТ-1 или защитные промежутки ПЗ-1 устанавливают в начале подходов линий передачи, защищенных тросами. Протяженные молниеотводы заземляют на каждой опоре подходов, причем импульсные сопротивления заземлений должны быть не более 10 Ом. В начале подхода к заземлению опоры присоединяют трос и разрядник РТ-1 или промежуток ПЗ-1. В конце подхода трое к заземленному контуру подстанции не присоединяют, а обрывают на первой опоре от подстанции. При этом пролет (50 – 60 м), не защищенный тросом, должен перекрываться защитными зонами стержневых молниеотводов, устанавливаемых для защиты открытых подстанций такой мощности.

20. Расчёт контура заземления подстанции

Сопротивление заземляющего устройства, к которому присоединена, нейтраль трансформатора, должно быть не более 4 Ом при номинальном напряжении 380 В. Это сопротивление должно быть обеспечено с учётом за-землителей нулевого провода ВЛ-0,38 кВ при количестве отходящих линий не менее двух. При этом сопротивление заземлителя, расположенного в не-, посредственной близости от нейтрали трансформатора, т.е. на ТП, и сопротивление повторного заземлителя не должны быть более 30 Ом. Сопротивление заземлителей нулевого рабочего провода каждой ВЛ-0,38 кВ должно быть не более 10 Ом.

В сельских сетях в качестве заземлений рекомендуется применять угловую сталь. Сопротивление одного электрода из угловой стали, погруженного вертикально с вершиной на поверхности земли, определяется по формуле

,

где bуг – ширина уголка, м;

р –удельное сопротивление грунта, Ом м;

1с. –длина стержня, м.

18,849×6,7=126,295 Ом

Предварительное число стержней одиночного повторного заземления нулевого рабочего провода, которое нужно выполнить на концах ВЛ длиной более 200 м и на вводах от ВЛ к электроустановкам, подлежащим занулению, определяется по формуле

,

Число стержней на ТП без учета взаимного экранирования

,

Зная под, lод и а – расстояние между стержнями, по приложению П.1 [Л1] определяется коэффициент взаимного экранирования ηс.

Тогда результирующее сопротивление стержневых заземлителей на ТП определяется по формуле

126,295/19,2=6,577Ом.

Сопротивление соединительной полосы вп = 40мм, длиной l = 33 м,

проложенной на глубине h = 0,5м с учетом коэффициента экранирования ηc

определяется по формуле

,

Ом,

расчетное сопротивление заземляющего устройства одиночного повторного заземлителя на ВЛ-0,38 кВ не должно превышать 30 Ом

,

Ом.


Если на одной линии ВЛ-0,38 кВ имеется п одиночных повторных заземлителей, то сопротивление заземлителей нулевого рабочего провода не должно превышать 10 Ом

,

Ом.

Тогда при количестве отходящих линий ВЛ-0,38 кВ сопротивление нейтрали трансформатора ТП не должно превышать 4 Ом

,

Ом.

21. Определение себестоимости распределения электроэнергии

Эта себестоимость складывается из отчислений на амортизацию и текущий ремонт соответствующих звеньев передающего устройства, стоимости потерь электроэнергии в этих звеньях и расходов на их обслуживание и эксплуатацию. Чтобы определить стоимость ежегодных отчислений на амортизацию и текущий ремонт, необходимо вычислить стоимость сооружений

,


где Кт.п – стоимость КТП;

К0,38 – стоимость сооружения линий 0,38 кВ.

К=10000+60000×1,628=107733,233руб.

Отчисления от капиталовложений определяются по формуле

,

где Ен – нормативный коэффициент эффективности, Ен= 0,12.

руб.

Издержки на амортизацию вычисляются по формуле

,

где ра = 0,064 и ра = 0,05 нормативы амортизационных отчислений капитальных затрат для ТП и ЛЭП.

руб.

Стоимость обслуживания линий 0,38 кВ и трансформаторной подстанции

где γ – стоимость одной условной единицы, γ = 35 руб;

п – количество условных единиц.

Количество условных единиц определяется по формуле

,

3,909+2.5=6,409,

24,326 руб.

Стоимость потерь энергии в трансформаторе и ВЛ-0,38 кВ определяются по формуле

,

где С0 – 1кВт ч потерянной энергии, С0 =5коп;

ΔWmр – потери энергии в трансформаторе, кВтч;

ΔW0,38 – потери энергии в линиях 0,38 кВ, кВтч.

руб.

Общая стоимость потерь определяется по формуле

,

руб.

Стоимость 1 кВтч отпущенного потребителю от шин высокого напряжения ТП6 определяется по формуле

,

коп.

Список литературы

1. Коваленко В.В., Ивашина А.В., Нагорный А.В., Кравцов А.В. Электроснабжение сельского хозяйства. Методические указания к курсовому и дипломному проектированию. – СтГАУ, АГРУС, 2004. –99с.

2. Будзко И.А. Электроснабжение сельского хозяйства. –М., Агропромиздат, 1990. –496с.: ил.

3. Федоров А.А., Старкова Л.Е. Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий. Учебное пособие для вузов. –М.: Энергоатомиздат, 1987. –368с.: ил.

4. Справочник по электроснабжению промышленных предприятий. Промышленные электрические сети. /Под ред. А.А. Федорова и Г.В. Сербиновксого. –М.: Энергия, 1981.

5. Федосеев А.М. Релейная защиты электроэнергетических систем. Релейная защита сетей: Учеб. Пособие для вузов. –М.: Энергоатомиздат, 1984. –520с.: ил.

6. Андреев В.А. Релейная защита, автоматика и в системах электроснабжения: учебное пособие для вузов. –2-е изд., перераб. и доп. –М.: Высшая школа, 1985. –391с.:ил.

7. Шабад М.А. Расчеты релейной защиты и автоматики распределительных сетей. –3-е изд.. перераб. и доп. –Л.: Энергоатомиздат, 1985. –296с.:ил.

8. Курсовое и дипломное проектирование по электроснабжению сельского хозяйства. /Под ред. В.Ю. Гессен, Ф.М. Ихтейман, С.Ф. Симоновский, Г.Н. Катович, -М.: Колос, 1981. –208с.:ил.

9. Каганов И.П. курсовое и дипломное проектирование. –3-е изд. перераб. и доп. –М.: Агропромиздат, 1990. –391с.: ил.

10. Левин М.С., Мурадян А.Б., Серых Н.Н. Качество электроэнергии в сетях сельских районов. –М.: Колос, 1975. –324с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно