Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Расчет линейных электрических цепей переменного тока

Тип Реферат
Предмет Физика
Просмотров
896
Размер файла
89 б
Поделиться

Ознакомительный фрагмент работы:

Расчет линейных электрических цепей переменного тока

Министерство образования Республики Беларусь

Учреждение образования

«Гродненский государственный университет имени Янки Купалы»

Технологический колледж

Специальность: 2-360331 «Монтаж и эксплуатация

электрооборудования»

Группа МиЭЭ-17з

КУРСОВАЯ РАБОТА

по дисциплине

«Теоретические основы электротехники»

Расчет линейных электрических цепей

переменного тока

Вариант №44

Разработал: Куликов А.Г.

Руководитель: Дубок Н.Д.


Задание на курсовую работу

Заданы три приёмника электрической энергии со следующими параметрами: Z 1 = -j65 Ом, Z 2 = 14+j56 Ом, Z 3 =56- j23 Ом. Рассчитать режимы работы электроприёмников при следующих схемах включения:

1.Присоединить приёмники последовательно к источнику с напряжением U = 300 В. Определить полное сопротивление цепи Z, ток I, напряжения на участках, угол сдвига фаз, мощности участков и всей цепи, индуктивности и ёмкости участков. Построить топографическую векторную диаграмму цепи.

2. Присоединить приёмники параллельно к источнику с напряжением

U = 300 В. Определить токи в ветвях и в неразветвленной части цепи, углы сдвига фаз в ветвях и во всей цепи, мощности ветвей и всей цепи. Построить векторную диаграмму цепи.

3. Составить из приёмников цепь с двумя узлами, включив в каждую

ветвь соответственно электродвижущую силу E2=230 В и Е3 = j240 B. Рассчитать в комплексной форме токи в ветвях, напряжения на участках, мощности источников и приёмников, составить уравнение баланса мощностей. Построить векторную диаграмму в комплексной плоскости. Для расчёта применить метод контурных токов.

4. Соединить приёмники в звезду с нулевым проводом (ZN = -j32 Ом), и подключить их к трёхфазному источнику с линейным напряжением UЛ =380 В. Определить фазные токи и напряжения источника, напряжение смещения нейтрали и ток в нулевом проводе. Построить топографическую векторную диаграмму в комплексной плоскости.

5. Соединить приёмники в треугольник и подключить его к тому же источнику трехфазного напряжения. Определить фазные и линейные напряжения и токи, мощности фаз и всей цепи. Построить векторную диаграмму цепи в комплексной плоскости.

6. Присоединить приёмники последовательно к источнику несинусоидального тока i=7Sin(wt+130)+1,2Sin(2wt-860)+0,4Sin3wtA. Определить действующие значения тока и напряжения, активную мощность цепи. Записать уравнения мгновенных значений напряжения в цепи. Значения сопротивлений считать для частоты первой гармоники.

Частоту напряжения считать равной f = 50 Гц.


1 Расчёт неразветвлённой цепи с помощью векторных диаграмм

В задании на курсовую работу сопротивления даны в комплексной форме. Так как расчёт цепи нужно выполнить с помощью векторных диаграмм, определяем соответствующие заданным комплексам активные и реактивные сопротивления: XС1= 65 Ом, R2 = 14 Ом, XL2=56 Ом, R3=56 Ом ,ХC3= 23 Ом.

Из заданных приёмников составляем неразветвлённую цепь (рис. 1).

Рисунок 1

Определяем активные и реактивные сопротивления всей цепи:

R = R2+ R3= 14 + 56 = 70 Ом;

X = -XC1+ XL2 – XC3 = - 65 + 56 - 23 = - 32 Ом.

Полное сопротивление всей цепи тогда определяем из выражения:

Z = = = 77 Ом.

Ток в цепи будет общим для всех приёмников и определится по закону Ома:


I = U / Z = 300/77 = 3.9 A.

Угол сдвига фаз между напряжением и током определяется по синусу

Sin j = X / Z или тангенсу Tg j = X / R,

так как эти функции являются нечётными и определяют знак угла “плюс” или “минус”. Положительный знак угла указывает на активно-индуктивный (или чисто индуктивный) характер нагрузки, а отрицательный знак угла указывает на активно-ёмкостный (или чисто ёмкостный) характер. Таким образом, угол сдвига фаз между напряжением и током определим по синусу

Sin j= X/Z = - 32/77 = - 0,4156;j = - 24.56°; Cos j = 0,9096.

Напряжения на участках цепи определяем также из формулы закона Ома:

UC1= I * XC1 = 3.9 *65 =253.5 B.

UR2 = I * R2 = 3.9 * 14 = 54.6 B.

UL2 = I * XL2 = 3.9 * 56 = 19.5 B

UR3 = I * R3 = 3.9 * 56 = 19.5 B

UC3 = I * XC3 = 3.9 * 23 = 89.7 B.

Определяем активные и реактивные мощности участков цепи:

QC1= I2 * XC1 =3.92 *65 = 989 вар.

P2 = I2 * R2 =3.92 * 14 = 213 Bт.

QL2 = I2 * XL2 = 3.92*56 = 852 вар.

P3=I2*R3 = 3.92*56= 852 Вт

QС3 = I2 * XС3 = 3.92 *23 =350 вар.


Активная, реактивная и полная мощности всей цепи соответственно будут равны:

P = P2+ P3= 213 +852 =1065 Вт.

Q = -QC1+ QL2 - QС3= -989+852- 350 = - 487 вар.

S = = =1171 B*A.

Полную, активную и реактивную мощности всей цепи можно определить также по другим формулам:

S = U * I =300 *3.9 =1170 В*А.

Р = S * Cosj =1170* 0,9096 =1064 Вт,

Q = S * Sin j=1170*( - 0,4154) = - 486 вар.

Определяем ёмкость и индуктивность участков. Угловая частота ω = 2 πf = 2 * 3,14 * 50 = 314 с-1

C1 = 1/wXc1=1/(314*65)= 0,000049 Ф = 49 мкФ

L2 = XL2/w = 56/314 = 0,178 Гн

С3 = 1/wXС3 = 1/(314*23) = 0,000138 Ф = 138 мкФ.

Для построения векторной диаграммы задаёмся масштабами тока и напряжения, которые будут соответственно равны MI = 0,25 A/см и MU = 25 B/см.

Построение топографической векторной диаграммы начинаем с вектора тока, который откладываем вдоль положительной горизонтальной оси координат. Векторы напряжений на участках строятся в порядке обтекания их током с учётом того, что векторы напряжений на активных элементах R2 и R3 совпадают по фазе с током и проводятся параллельно вектору тока. Вектор напряжения на индуктивности L2 опережает ток по фазе на угол 900 и поэтому откладывается на чертеже вверх по отношению к току. Векторы напряжений на ёмкости С1 и отстают от тока по фазе на угол 900 и откладываются на чертеже вниз по отношению к току. Вектор напряжения между зажимами цепи проводится с начала вектора тока в конец вектора С3. На векторной диаграмме отмечаем треугольник напряжений ОАВ, из которого активная составляющая напряжения

Uа = UR2 + UR3

и реактивная составляющая напряжения

Uр = -UС1 + UL2 – UС3.

Топографическая векторная диаграмма построена на рисунке 2.


Ua

O

φ

MI= 0,5 А/см

МU= 25 В/см

UC1 U UP

UR3

UR2 UL2


UC3

Рисунок 2

2 Расчёт разветвлённой цепи с помощью векторных диаграмм

Присоединяем заданные приёмники параллельно к источнику напряжения. Это значит, что цепь состоит из трех ветвей, для которых напряжение источника является общим. Схема цепи показана на рисунке 3.

Расчёт параллельной цепи выполняем по активным и реактивным составляющим токов.


Рисунок 3

Этот метод предусматривает использование схемы замещения с последовательным соединением элементов. В данном случае три параллельные ветви рассматриваются как три отдельные неразветвлённые цепи, подключенные к одному источнику с напряжением U. Поэтому в начале расчёта определяем полные сопротивления ветвей:

Z1 = Хс1 = 65 Ом.

Z2 = = = 57.7 Ом.

Z3 = = 60.5 Ом.

Углы сдвига фаз между напряжениями и токами в ветвях определяются также по синусу (или тангенсу):

Sinφ1 = -1; j1 = - 90°;Cosφ1 = 0

Sinφ2 = XL2 / Z2 = 56 / 57.7 = O.9705; j2 = 76.05°; Cosφ2 = 0.241.

Sinφ3 = - XC3/Z3= - 23/60.5= - 0.38; φ3 = - 22.34°; Cosφ3 = 0.9249.

Затем можно определять токи в ветвях по закону Ома:


I1 = U / Z1 =300 / 65 = 4.62 А.

I2 = U / Z2 = 300 / 57.7 = 5.2 А.

I3 = U / Z3 = 300 / 60.5 = 4.96А.

Для определения тока в неразветвлённой части цепи нужно знать активные и реактивные составляющие токов в ветвях и неразветвленной части цепи:

Ip1 = I1*Sinj1= 4.62*(- 1) = - 4.62 A.

Ia2 = I2*Cosφ2 = 5.2 * 0,241 = 1.25A;

Ip2 = I2*Sinφ2 = 5.2 * 0,9705 = 5.05A;

Ia3 = I3*Cosj3 = 4.96*0.9249 = 4.59 A.

Ip3 = I3*Sinj3 = 4.96*(- 0.38) = - 1.88 A.

Активная и реактивная составляющие тока в неразветвлённой части цепи:

Ia = Ia2 + Ia3 = 1.25+4.59 = 5.84 A.

Ip = Ip1 + Ip2 + Ip3 = - 4.62+5.05 – 1.88 = - 1.45 A.

Полный ток в неразветвлённой части цепи:

I = = = 6.02 A.

Угол сдвига фаз на входе цепи:

Sinφ = IP / I = - 1.45/6.02 = - 0.2409; φ = -13.940; Cosφ = 0.9706.

Активные, реактивные и полные мощности ветвей:


QC1 = I12 *XC1= 4.622 *65 = 1387 вар.

S1 = U*I1 = 300*4.62 = 1387 B*A.

P2 = I22 * R2 = 5.22* 14 = 379Вт.

QL2 = I22 * XL2 = 5.22 * 56 =1514 вар.

S2 = U * I2 = 300 * 5.2 =1560 В*А.

P3 = I32*R3 = 4.962*56 = 1378 Bт

QC3 = I32 * XC3 = 4.962 * 23 =566 вар.

S2 = U * I2 = 300 *4.96 = 1488 В*А

Активные, реактивные и полные мощности всей цепи:

P = P2 + P3 = 379 + 1378 =1757 Вт.

Q = - QC1 + QL2 - QC3 = - 1387 +1514 -566 = - 439 вар.

S = = = 1811 В*А, или

S = U * I = 300*6.02 = 1806 В*А.

P = S*Cosφ = 1806 * 0,9706 = 1753 Вт.

Q = S * Sinφ = 1806*(- 0.2404) = - 434вар.

Для построения векторной диаграммы задаёмся масштабами напряжений MU = 25 В/см и токов MI = 0.5 А/см. Векторную диаграмму начинаем строить с вектора напряжения, который откладываем вдоль горизонтальной положительной оси. Векторная диаграмма токов строится с учётом того, что активные токи Ia2 и Ia3 совпадают по фазе с напряжением, поэтому их векторы параллельны вектору напряжения; реактивный индуктивный ток Ip2 отстает по фазе от напряжения, и его вектор строим под углом 900 к вектору напряжения в сторону отставания; реактивные емкостные токи Ip1 и Ip3 опережают по фазе напряжение, и их векторы строим под углом 90° к вектору напряжения в сторону опережения. Вектор тока в неразветвлённой части цепи строим с начала построения в конец вектора емкостного тока Ip3. Векторная диаграмма построена на рисунке 4.

Ia2

MI= 0,5 А/см

МU= 25 В/см

I2

I1=Ip1 Ip2

OIa U

Ia3

I3 Ip3 Ip

I

Рисунок 4

3 Расчёт сложных цепей переменного тока символическим методом

Электрическая схема цепи и комплексная схема замещения представлены на рисунке 5а и б соответственно.


Рисунок 5

Намечаем в независимых контурах заданной цепи, как показано на рисунке 5б, контурные токи IK1 и IK2 – некоторые расчётные комплексные величины, которые одинаковы для всех ветвей выбранных контуров. Направления контурных токов принимаются произвольно. Для определения контурных токов составляем два уравнения по второму закону Кирхгофа:

IK1*(Z1 + Z2) – IK2*Z2 = E2

- IK1*Z2+IK2*(Z2+Z3)= E3 - E2

Подставляем данные в систему:

IK1*(- j65+14+j56) – IK2*(14+j56) = 230

-IK1*(14+j56) +IK2 *(14+j56+56 – j23) = j240-230

IK1*(14-j9) – IK2*(14+j56) = 230

-IK1*(14+j56) + IK2*(70+j33) = -230+ j240

Решаем систему с помощью определителей. Определитель системы:


=1277-j168+2940– j1568=4217-j1736

Частные определители :

= = 16100+j7590–16660-j9520= -560–j1930.

=-1060+j5430+3220+j12880 = 2160+j18310

Определяем контурные токи:

IK1 = = = 0.0476-j0.438 A.

IK2 = = = - 1.09+ j3.89 A.

Действительные токи в ветвях цепи определяем как результат наложения контурных токов:

I1 = IK1 = 0.0476 – j0.438 = 0.441 A

I2 = IK1-IK2 = 0.0476.- j0.438+1.09- j3.89 = 1.14 – j4.33 = 4.48 A

I3 = IK2 = -1.09 + j3.89 = 4.04A.

Составляем уравнение баланса мощностей в заданной электрической цепи. Определяем комплексные мощности источников:

SE2 = E2* =230(1.14+j4.33) = 262+j996=1030B*A

SE23= E3* = j240*(-1.09 – j3.89) = 912 – j262 = 949B*A

Определяем комплексные мощности приёмников электрической энергии:

S1 = I12*Z1 =0.4412*( – j65) = – j12.6 =12.6 B*A

S2 = I22*Z2 = 4.482*(14+j56) = 281+j1124=1159 B*A

S3 = I32*Z3 = 4.042*(56 – j23) = 914– j375 =988B*A.

Уравнение баланса комплексных мощностей!

SЕ1 + SE2=S1 + S2+S3;

262+j996+912-j262 = – j12.6+281+j1124+914– j375

1174+ j734 @ 1182+ j749; 1385@ 1400

Относительная и угловая погрешности незначительны.

Для построения векторной диаграммы задаёмся масштабами токов MI = 0.25 А/см и ЭДС ME = 50 В/см. Векторная диаграмма в комплексной плоскости построена на рисунке 6.

4 Расчёт трёхфазной цепи при соединении приемника в звезду

Схема заданной цепи изображена на рисунке 7.

Определяем систе­му фазных напряжений генератора. Фазное напряжение:


UФ = Uл/= 380/1,73=220 В.

Комплексные фазные напряжения генератора:

UA = UФ = 220 B

UB = UAe-j120 = 220e-j120 = –110 – j191 B

UC = UAej120 = 220ej120 = –110 + j191 B

Определяем полные проводимости фаз приёмника:

YA = = j0,01538 См.

YB = = 0.0042-j0.0168 См.

YC = = 0.0153+j0.00628Cм.

YN=== j0.03125 См.

Рисунок 7


Узловым напряжением является в данном случае напряжение смещения нейтрали, которое определяется по формуле:

UN=

= (j3.38-3.67+j1.05-2.88+j2.23)/(0.05075+j0.00486) = (-6.55+j6.66)/(0.0195+j0.03611)= 67+j218 = 228B.

Определяем фазные напряжения на нагрузке:

UA/ = UAUN = 220- (67+j218) = 153-j218 = 266 B.

UB/ = UBUN = (–110-j191) - (67+j218) = -177-j409 =446 B.

UC/ = UCUN=(–110+j191) - (67+j218) = -177 – j27 = 179 B.

Определяем токи в фазах нагрузки:

IA = UA/*YA = (153-j218)*(j0.01538) = 3.35+j2.35 = 4.1 A.

IB = UB/*YB = (-177-j409)*(0.0042-j0.0168) = -7.61+j1.26 =7.72A.

IC=UC/*YC= (-177 – j27)*(0.0153+j0.00628)=- 2,53–j1,52= 2,96A.

IN= UN*YN = (67+j218)*j0.03125 = - 6,8 + j2,09 = 7,12*

Проверяем правильность определения токов по первому закону Кирхгофа для точки N’:


IA + IB + IC =IN

3.35+j2.35 -7.61+j1.26 - 2,53 – j1,52 @ - 6,8 + j2,09;

- 6,79+j2.09 @ - 6,8 + j2,09.

Определяем комплексные мощности фаз и всей цепи:

SA = IA2 * Z1 = 4,12*(-j65) = -j1092=1092 B*A.

SB = IB2 * Z2 = 7,722*(14+j56) = 834+j3338 =3440 B*A

SC = IC2 * Z3 = 2,962*(56-j23) = 491 – j 202 = 530 B*A.

S= SA + SB + SC = -j1092+ 834+j3338+ 491 – j 202 = 1325+j2044 =

= 2436B*A.

Для построения векторной диаграммы задаёмся масштабами токов MI = 1 А/см и напряжений MU = 40 B/см. Векторная диаграмма на комплексной плоскости построена на рисунке 8.

5 Расчёт трёхфазной цепи при соединении приёмника в треугольник

Схема заданной цепи изображена на рисунке 9

Рисунок 9.


В данном случае линейные напряжения генератора являются фазными

напряжениями нагрузки:

UAB = UЛ = 380 В.

UBC = 380 = -190-j329 B.

UCA = 380= -190+j329 B.

Определяем систему фазных токов нагрузки:

IAB = = = j5,85 = 5,85 A

IBC = = = -6,32+j1,81 = 6,58 A

ICA = = = -4,96+j3,83 = 6,27A

Систему линейных токов определяем из соотношений:

IA = IABICA = j5,85+4,96-j3,83 = 4,96+j2,02 = 5,36 A

IB = IBCIAB = -6,32+j1,81-j5,85 = -6,32-j4,04 = 7,5A

IC = ICAIBC = -4,96+j3,83+6,32-j1,81 = 1,36+j1,92 =2,35 A

Определяем мощности фаз приемника:

SAB=IAB2*Z1 = 5,852*(-j65) = -j2224 = 2224B*A.

SBC = IBC2*Z2 = 6,582*(14+j56) = 606+j2425 = 2499B*A.

SCA = ICA2*Z3 = 6,272*(56 – j23) =2201– j904 = 2380*B*A.

Определяем мощность трехфазной нагрузки:

SAB+SBC +SCA = -j2224+606+j2425+2201– j904 =2807 – j703 =

= 2894B*A.

Для построения векторной диаграммы задаёмся масштабами токов MI =1 A/см и напряжений MU = 50A/см. Векторная диаграмма построена на рисунке 10.

6 Расчёт неразветвлённой цепи с несинусоидальными напряжениями и токами

Составляем схему заданной цепи, подключая последовательно соединённые приёмники к источнику несинусоидального напряжения, под действием которого в цепи возникает ток с мгновенным значением

i=7Sin(wt+130)+1,2Sin(2wt-860)+0,4Sin3wt A,который на схеме замещения представляем как последовательно соединённые три источника переменного напряжения u1, u2 и u3 c разными частотами (рисунок 11)

Величины сопротивлений заданы для частоты первой гармоники:

XC11 = 18 Ом, R2 = 23 Ом, XL21 = 14 Ом, R3 = 12 Ом, XC31 = 62 Ом. Поскольку напряжения источников имеют разные частоты, то и реактивные сопротивления для них будут иметь разные величины. Активные сопротивления считаем от частоты не зависящими. Поэтому расчёт ведём методом наложения, то есть отдельно для каждой гармоники.

.

Рисунок 11.


Первая гармоника

Определяем активное и реактивное сопротивления всей цепи:

R = R2 + R3 = 14+56 = 70 Ом. X1 = -XC11+ XL21- XC31 = - 65+56–23 =

= -32 Ом.

Полное сопротивление цепи:

Z1 = = = 76,7 Ом.

Амплитудные значения напряжения и тока:

Im1 = 7 A, Um1 = Im1*Z1= 7*76.7 =537 B.

Действующие значения напряжения и тока:

U1 = Um1 / = 537 / 1,41 = 381 B.

I1 = Im1 / = 7 / 1,41 = 4.96 A.

Угол сдвига фаз между напряжением и током определяем по синусу:

Sinφ1 = X1/Z1 = -32/76.7 = - 0.4172. j1= - 24.66°, Cosφ1=0.9088.

Активная и реактивная мощности первой гармоники:

P1 = I12 * R = 4.962 * 70 =1722 Вт.

Начальная фаза тока определяется из соотношения:


φ1 = yU1 – yI1, отсюдаyU1 =yI1 + j1 = 13°- 24.66°= - 11.66°

Мгновенное значение напряжения первой гармоники

u1= Um1 * Sin (ωt + yU1) = 537 * Sin (ωt – 11.66°) B.

Вторая гармоника.

Для остальных гармоник напряжения расчёты приводим без дополнительных разъяснений.

X2= XC11/ 2 + XL21* 2 - XC31 / 2 = -65/ 2 + 56* 2 - 23 / 2 = 68 Ом.

Z2===97.6 Ом,

Im2=1.2 A, Um2= Im2 *Z2=1.2*97.6 =117 B.

U2= Um2/ =117 / 1,41 = 83 B.I2= Im2/ = 1.2 / 1,41 = 0.85 A.

Sin φ2= X2/ Z2= 68/97.6= 0,6967.j2 = 44.16°, Cos φ2 = 0,7173.

P2 = I22 * R2 = 0.852 *70 = 51 Вт.

yU2 =yI2 + j2 = -86°+ 44.16°= - 41.9°

u2= Um2 * Sin (2ωt + yU2) = 117 * Sin (2ωt – 41.9°) B.

Третья гармоника

X3= XC11 /3 + XL11* 3 – XC31 / 3 = - 65 / 3 + 56* 3 - 23 / 3 =139 Ом.

Z3 = = 156 Ом. Im3 =0.4 A, Um3 = Im3 *Z3 =0.4 *156 =

= 62.4 B.

U3= Um3/ =62.4/ = 44.3 B. I3 = Im3/ = 0.4 / 1,41 = 0.28 A.

Sin φ3 = X3 / Z3 =139 /156 = 0,891. j3 = 63°. Cos φ3 = 0,454.

P3 = I32 * R = 0.282 *70 = 0.5 Вт.

yU3 =yI3 + j3 = 63°.

u3= Um3 * Sin (3ωt + yU3) =44.3 * Sin (3ωt +63°) B.

Определяем действующие значения тока и напряжения:

I = = = 5.04 A.

U = = = 559 B.

Активная и реактивная мощности цепи:

P = P1+P2+P3=1722+51+0.5=1774 Вт.

Средневзвешенный коэффициент мощности цепи:

Cos Х = Р / (U * I) = 1774/ (559 *5.04) = 0,6296.

Уравнение мгновенных значений напряжения между зажимами цепи:

u=u1+u2+u3=537 * Sin (ωt – 11.66°)+117 * Sin (2ωt – 41.9°)+

+44.3 * Sin (3ωt +63°) B.


Литература

1. Ф.Е. Евдокимов. Теоретические основы электротехники. - М. “Высшая школа “,1981 г.

2. В.С. Попов. Теоретическая электротехника. – М. “Энергия”,

1978 г.

3. Ю.В. Буртаев, П. И. Овсянников. Теоретические основы электротехники.– М. “Энергоатомиздат”, 1984 г.

4. Л.А. Частоедов. Электротехника. - М. “Высшая школа”, 1984 г.

5. М.Ю. Зайчик. Сборник задач и упражнений по теоретической электротехнике. – М. “Энергоатомиздат” , 1988 г.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно