Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Тахометр индукционный

Тип Реферат
Предмет Коммуникации и связь
Просмотров
1575
Размер файла
909 б
Поделиться

Ознакомительный фрагмент работы:

Тахометр индукционный

АГЕНТСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра: « Приборостроение, метрология и сертификация»

Допустить к защите «_____»______________200

Руководитель__________________

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине:

«Физические основы получения информации»

Тема курсовой работы:

Тахометр индукционный

Проект выполнил студент Есипов Андрей Олегович

Шифр 060323 группа 31-П факультет ФЭиП

Специальность 200101

Курсовая работа защищена с оценкой _____________

Студент Есипов А.О.

Руководитель Мишин В.В.

Члены комиссии _______________________/ФИО/

_______________________/ФИО/

Орел 2008


АННОТАЦИЯ

Целью данного курсового проекта является проектирование индукционного тахометра. Для выполнения данной цели был проведен обзор тахометров различного принципа действия. Для каждого преобразователя были выделены достоинства и недостатки. После анализа преобразователей, один из них был взят за основу для дальнейшего проектирования.

В работе произведены расчеты основных параметров и элементов конструкции индукционного тахометра. На основании расчетов создан сборочный чертеж и деталировка. По результатам проектирования были сделаны выводы, которые занесены в заключение.

Цель курсового проекта была достигнута. Разработан индукционный тахометр, расчетные характеристики которого удовлетворяют заданным.


СОДЕРЖАНИЕ

ВВЕДЕНИЕ. 5

1 ОБЗОР ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ ВРАЩЕНИЯ.. 6

1.1 Оптический тахометр. 6

1.2 Центробежные тахометры.. 7

1.3 Датчики с переменным магнитным сопротивлением. 9

1.4 Электрические тахометры постоянного тока. 10

1.5 Индукционный тахометр. 12

1.6 Вывод. 14

2 ТЕХНИЧЕСКОЕ ЗАДАНИЕ. 15

2.1 Введение. 15

2.2 Источники разработки. 15

2.3. Технические требования. 15

2.3.1 Состав изделия. 15

2.3.2 Технические параметры.. 16

2.3.3 Принцип работы.. 16

2.3.4 Условия эксплуатации. 16

3 КОНСТРУКТОРСКИЙ РАЗДЕЛ.. 18

3.1 Разработка структурной схемы.. 18

3.2 Расчет функции преобразования. 19

3.3 Расчет тепловых расширений. 26

3.4 Соединение зубчатой шестерни и вала. 29

3.5 Расчет погрешностей. 30

ЗАКЛЮЧЕНИЕ. 32

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ.. 33

Приложение А.. 35

Приложение Б. 37

Приложение В.. 38

Приложение Г. 39

Приложение Д.. 40

Приложение Е. 41


ВВЕДЕНИЕ

Измерительный преобразователь – это техническое устройство, построенное на определенном физическом принципе действия, выполняющее одно частное измерительное преобразование. Работа измерительных преобразователей протекает в сложных условиях, так как объект измерения – это, как правило, сложный, многогранный процесс, характеризующийся множеством параметров, каждый из которых действует на измерительный преобразователь совместно с остальными параметрами. Нас же интересует только один параметр, который называем измеряемой величиной, а все остальные параметры процесса считаем помехами.

Принцип действия индукционных преобразователей основан на использовании явления электромагнитной индукции. Индукционные преобразователи широко применяются для измерения параметров магнитных полей, частоты вращения, линейных и угловых скоростей, параметров вибрации и сейсмических колебаний, расхода жидких веществ.

Погрешность индукционных преобразователей в значительной степени зависит от режима, в котором они работают. Наибольшая погрешность возникает в режиме, при котором через нагрузку течет значительный ток.

Основные тенденции, характерные для современной техники – это повышение точности и расширение частотного диапазона измеряемых величин. Эти тенденции в полной мере относятся к индукционным измерительным преобразователям, область применения которых в последние годы значительно расширилась, а метрологические характеристики благодаря ряду новых интересных решений намного улучшились.

Индукционные преобразователи обладают высокой надежностью и высокими метрологическими и эксплуатационными характеристиками.

1 ОБЗОР ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ ВРАЩЕНИЯ

Обзор преобразователей частоты вращения представлен на листе 1 графической части курсового проекта.

1.1 Оптический тахометр

В наиболее простой форме оптический тахометр состоит из источника света и оптического приемника — фотодиода или фототранзистора.

Вращающееся тело либо снабжают отражающими метками расположенными регулярно по окружности, на которые направляется световой пучок, либо соединяют с диском, имеющим попеременно прозрачные и непрозрачные сектора, который располагают между источником и приемником света. Получая модулированный скачкообразными изменениями отражения или пропускания поток, фотоприемник выдает электрический сигнал с частотой, пропорциональной скорости вращения, и с амплитудой, не зависящей от этой скорости.

Рисунок 2 – Принципиальная схема конического тахометра

Диапазон измеряемых скоростей зависит, с одной стороны, от числа скачков оптических свойств (риски, щели, прозрачные сектора, нанесенные на диск или на вращающееся тело), а с другой — от полосы пропускания приемника и связанных с ним электрических схем. Для измерений малых скоростей используются диски с большим числом щелей (от 500 до нескольких тысяч); в измерениях больших скоростей, например 105 – 106 об/мин в случае ультрацентрифуг, диск имеет только одну щель, и максимальная измеряемая скорость определяется верхней граничной частотой электрической цепи.

Достоинства оптического тахометра: простота конструкции, линейная зависимость между входным и выходным сигналом, независимость выходного сигнала фотоприемника от скорости вращения, широкий диапазон измерений.

Недостатки: возможно загрязнение отражающих меток или секторов диска, малая надежность, громоздкость, сложность изготовления.

1.2 Центробежные тахометры

Центробежные тахометры выполняются в двух вариантах: конический (рисунок 2) и кольцевой (рисунок 3).

В коническом тахометре на шарнирах, вращающихся вместе с осью, установлены грузы m, которые под действием центробежных сил расходятся, перемещая вдоль оси муфту 1 и сжимая пружину 2.

Рисунок 2 – Принципиальная схема конического тахометра

Если обозначить у - перемещение муфты и у0 - начальную длину пружины (при щ = 0), то зависимость у от угловой скорости щ будет иметь вид


(1)

где – чувствительность прибора;

n, т, r0 и c1 - соответственно число грузов, масса груза, радиус муфты и коэффициент жесткости пружины.

Из выражения (1) следует, что центробежный тахометр имеет квадратичную характеристику.

В кольцевом тахометре при не вращающейся оси (щ = 0) плоскость кольца наклонена по отношению к оси на угол а0 (рисунок 3). При вращении оси кольцо стремиться занять положение, перпендикулярное оси вращения, однако этому препятствует пружина 2. Перемещение муфты 1 пропорционально приращению угла отклонения кольца

(2)

где – чувствительность кольцевого тахометра;

m, r, c1соответственно масса и радиус кольца, коэффициент жесткости пружины.

Рисунок 3 – Принципиальная схема кольцевого тахометра

Достоинства центробежных тахометров: показание не зависит от направления вращения; достаточные по величине силы, сообщающие движение стрелочному механизму, допускают приведение в действие дополнительных управляющих и регулирующих устройств.

Недостатки центробежных тахометров: недистанционность, значительные погрешности и технологические трудности изготовления и регулировки, показания такого вида тахометров начинаются не от нулевого, а от некоторого минимального значения.

Максимальная частота вращения серийно впускаемых центробежных тахометров составляет 10000 об·мин-1.

1.3 Датчики с переменным магнитным сопротивлением

В датчиках такого типа измерительная катушка снабжается магнитным сердечником, на который воздействует поток индукции постоянного магнита. Катушка помещена перед диском (полюсное колесо) или перед вращающимся ферримагнитным телом. Последовательность скачков магнитных свойств (зубья, щели, отверстия) диска или вращающегося тела вызывает периодическое изменение магнитного сопротивления в магнитной цепи катушки, которое наводит в ней ЭДС с частотой, пропорциональной скорости вращения. Амплитуда этой ЭДС также зависит от расстояния между катушкой и вращающимся телом и от скорости вращения.

Рисунок 4 – Принципиальная схема датчика с переменным магнитным сопротивлением

Диапазон измерений зависит от числа р скачкообразных изменений магнитных свойств вращающегося тела, например, от числа зубьев колеса.

Минимальная измеряемая скорость тем меньше, чем больше р, тогда как максимальная измеряемая скорость тем выше, чем меньше р. Типичные диапазоны измерении составляют от 50 до 500 об·мин-1 для колеса с 60 зубьями и от 500 до 10 000 об·мин-1 для колеса с 15 зубьями.

Достоинствами такого типа датчиков являются: простота конструкции, широкий диапазон измерений.

Недостатки датчиков с переменным магнитным сопротивлением: при малых скоростях амплитуда может быть недостаточной для обнаружения, вследствие чего появляется «мертвая зона», в которой невозможны никакие измерения; амплитуда ЭДС быстро падает с увеличение зазора между катушкой и вращающимся телом.

1.4 Электрические тахометры постоянного тока

Электрические тахометры постоянного тока (рисунок 5) включают тахогенератор постоянного тока и гальванометр. Тахогенераторы бывают двух типов: с ограниченным (рисунок 5 а) и неограниченным (рисунок 5 б) углом поворота ротора.

Тахогенератор с ограниченным углом поворота выполняется с неподвижной статорной обмоткой 2, внутри которой помещается постоянный магнит 1, связанный с валом, скорость вращения которого контролируется. Наводимая в статорной обмотке ЭДС равна

(3)

где k – коэффициент, зависящий от геометрических и обмоточных данных;

В – магнитная индукция в зазоре, являющаяся функцией угла поворота ротора . Обычно

( 4)

Тахогенераторы подобного типа применяются в качестве датчиков угловой скорости и скоростной обратной связи в системах управления полетом. Их достоинство – отсутствие коллектора и щеток, малая масса и габаритные размеры.

Тахометр постоянного тока состоит из тахогенератора с неограниченным углом поворота ротора и гальванометра. Основными элементами тахогенератора являются постоянные магниты 3 с соответствующими магнитопроводами, обмотка якоря 4 и коллектор 5 со щетками 6. Снимаемое с коллектора напряжение постоянного тока измеряется гальванометром, рамка которого имеет сопротивление Rp. В схему включается добавочное сопротивление RД.

Если е - ЭДС на зажимах генератора, то подобно (4)

(5)

где В - магнитная индукция;

- измеряемая угловая скорость.

Сила тока в рамке гальванометра будет:

(6)

где RВвнутреннее сопротивление якоря.

В целях уменьшения влияния нагрузки на показания прибора должно быть удовлетворено условие. Поскольку угол отклонения рамки гальванометра пропорционален силе тока, то шкала прибора будет равномерна.

Из выражения (6) видно, что погрешности тахометра возникают из-за непостоянства магнитной индукции в зазоре В, сопротивления рамки Rр и внутреннего сопротивления якоря RB Уменьшение погрешности, вызванной изменением В, достигается применением термомагнитного шунта. Для уменьшение погрешности от непостоянства Rр применяется добавочное сопротивление RД и другие схемы компенсации.

Рисунок 5 – Принципиальные схемы электрических тахометров постоянного тока

Диапазон измерений серийно выпускаемых тахогенераторов постоянного тока составляет от 0,1 до 6000 об·мин-1.

К достоинствам электрических генераторов постоянного тока относятся: линейная зависимость между входным и выходным сигналом; малые габаритные размеры; небольшая масса; отсутствие фазовой погрешности; возможность возбуждения постоянными магнитами, что позволяет обойтись без источника питания.

Недостатки генераторов постоянного тока: сложность конструкции; наличие скользящего контакта между щетками и коллектором, что приводит к снижению надежности тахогенератора и к нестабильности выходной характеристики; наличие зоны нечувствительности; помехи радиоприему.

1.5 Индукционный тахометр

Тахогенератор такого прибора (рисунок 6) представляет собой электрическую машину асинхронного типа, состоящую из внешнего 1 и внутреннего 2 магнитопроводов, в зазоре между которыми располагаются статорная обмотка 3 (состоящая из обмотки возбуждения и сигнальной обмотки) и алюминиевый тонкостенный ротор 4, выполненный в виде цилиндра. Оси обмоток (катушек) возбуждения и сигнальной взаимно перпендикулярны.

К обмотке возбуждения подводится переменное UП напряжение частотой 1 кГц, а с сигнальной обмотки снимается напряжение Uc той же частоты, амплитуда которого пропорциональна угловой скорости вращения полого ротора . При неподвижном роторе и полной электрической и магнитной симметрии статора напряжение в сигнальной обмотке не индуктируется.

При вращений ротора с угловой скоростью в сигнальной обмотке индуктируется напряжение

(7)

где f – частота питающего напряжения (f=400 Гц);

В – магнитная индукция, создаваемая в зазоре питающим напряжением.

Таким образом, в рассматриваемом тахометре напряжение несущей частоты f модулируется измеряемой угловой скоростью . Для измерения угловой скорости необходимо осуществить демодуляцию сигнала Uc и подать демодулированное напряжение на измеритель.

Поскольку принцип действия индукционного тахометра основан на наведении питающим напряжением в роторе вихревых токов, которые в свою очередь наводят ЭДС в сигнальной обмотке, то погрешности прибора вызываются непостоянством амплитуды и частоты питающего напряжения, непостоянством сопротивления ротора для вихревых токов, непостоянством нагрузки.

Для уменьшения погрешностей от непостоянства UП и f можно применить схемы стабилизации этих величин. Стабилизация сопротивления ротора достигается путем выбора материала с малым температурным коэффициентом. Для устранения погрешности от непостоянства нагрузки должно быть удовлетворено условие работы тахогенератора в режиме холостого хода.

Рисунок 6 – Принципиальная схема индукционного тахометра

Недостатки индукционного тахометра: необходимость в источнике питания, сложность изготовления, значительные погрешности.

Достоинства индукционного тахометра: дистанционность передачи выходного сигнала; у тахометра такого типа почти отсутствует «мертвая зона», в которой невозможно проводить измерения, поэтому его можно применять для измерения малых скоростей.

1.6 Вывод

За основу дальнейшей разработки индукционного тахометра выбран датчик с переменным магнитным сопротивлением. По сравнению с другими рассмотренными преобразователями он является одним из простых с точки зрения конструкции. Преобразователь не содержит дорогостоящих деталей. Он удобен с точки зрения взаимозаменяемости и ремонта. Преобразователь данного типа можно выполнить в закрытом исполнении, что позволяет использовать его в неблагоприятных условиях. Еще одним преимуществом данного преобразователя является жесткое скрепление его вала с валом объекта, частоту вращения которого необходимо. Его конструкция позволяет использование как в лабораторных условиях, так и на производстве.


2 ТЕХНИЧЕСКОЕ ЗАДАНИЕ

2.1 Введение

Настоящее техническое задание распространяется на разработку индукционного тахометра, предназначенного для измерения частоты вращения вращающихся объектов.

2.2 Источники разработки

Преобразователь разрабатывается на основании датчика с переменным магнитным сопротивлением.

2.3. Технические требования

2.3.1 Состав изделия

Индукционный тахометр содержит: корпус, крышку корпуса, П-образный сердечник с двумя намотанными на него катушками, вставленный в пазы корпуса и закрепленный с помощью фиксирующей скобы, вал, на котором надета зубчатая шестерня. Вал крепится в двух радиально-упорных подшипниках, вставленных в крышку корпуса. Между подшипниками располагается распорная втулка. Для предотвращения передвижения вала внутри подшипников на нем установлено стопорное кольцо. Для предотвращения перемещения подшипников внутри крышки корпуса в ней также установлено стопорное кольцо. Окончательное закрепление подшипников внутри крышки корпуса производится с помощью навинчивания запорной крышки. Также на крышке корпуса располагаются выводы катушек. Скрепление двух корпуса и его крышки осуществляется с помощью винтов.

Измерение осуществляется следующим образом: вал преобразователя с помощью шпоночного соединения присоединяется к измеряемому объекту. На катушку подмагничивания подается постоянное напряжение. Между выводами вторичной катушки измеряется переменное напряжение, амплитуда которого пропорциональна скорости вращения вала и с откалиброванной в об·мин-1 шкалы вольтметра снимаются показания.

2.3.2 Технические параметры

Диапазон измерений преобразователя 100ч1000 об·мин-1.

Чувствительность преобразователя 10 об·мин-1

Погрешность преобразователя не превышает 5%.

Стабильное постоянное напряжение на катушке подмагничивания составляет 1±0,05В.

Общая потребляемая мощность преобразователя не превышает 0,02 Вт.

2.3.3 Принцип работы

Вращение вала передается зубчатой шестерне, расположенной между стержнями сердечника. На обмотку подмагничивания сердечника подается постоянное напряжение, что наводит в сердечнике магнитный поток. При вращении зубчатой шестерни изменяется магнитное сопротивление цепи, образованной сердечником и зубьями и впадинами шестерни, что ведет к периодическому изменению магнитного потока через сердечник, вследствие чего во вторичной обмотке наводится ЭДС, амплитуда которой пропорциональна скорости вращения вала. Между выводами вторичной обмотки измеряется амплитудное значение переменного напряжения и с откалиброванной в об·мин-1 шкалы вольтметра снимаются показания.

2.3.4 Условия эксплуатации

Допускаемая окружающая температура от -20 до +40 °С

Относительная влажность до 98% (при 20±5°С)

Атмосферное давление 84 – 106,7 кПа

Во время эксплуатации, датчик должен находится в обогреваемом или охлаждаемом помещении без непосредственного воздействия осадков, песка и пыли.

3 КОНСТРУКТОРСКИЙ РАЗДЕЛ

3.1 Разработка структурной схемы

Структурная схема преобразователя представлена на листе 3 графической части курсового проекта.

На рисунке 7 изображена структурная схема индукционного тахометра.

Рисунок 8 – Структурная схема преобразователя

Вращающийся объект воздействует на вал 6, который закреплен в двух радиально-упорных подшипниках 20. Вращение вала 6 непосредственно передается зубчатой шестерне 7. На обмотку подмагничивания 3 подается постоянное напряжение, которое создает в цепи, образованной магнитопроводом 11 и зубчатой шестерней 7, магнитный поток. При вращении зубчатой шестерни 7 изменяется магнитное сопротивление цепи, образованной магнитопроводом 11 и зубьями и впадинами шестерни 7, что ведет к периодическому изменению магнитного потока через сердечник, вследствие чего во вторичной обмотке 5 наводится ЭДС, амплитуда которой пропорциональна скорости вращения вала. Подшипники 20 вставлены в крышку корпуса 4, между ними на валу 6 располагается распорная втулка 9, для предотвращения их передвижения внутри крышки корпуса 4 служит стопорное кольцо 18. Для предотвращения передвижения подшипников по валу 6 на нем устанавливается стопорное кольцо 19. Окончательное закрепление подшипников внутри крышки корпуса 4 осуществляется навинчиванием на нее запорной крышки 10. Также в крышке корпуса 4 установлены выводы обмоток 8. Магнитопровод 11 вставлен в пазы корпуса 1 и закреплен с помощью фиксирующей скобы 2, соединенной с корпусом винтами 12 с гайками 13. Во избежание повреждения фиксирующей скобы 2 под гайку 13 подкладывается шайба 14. Скрепление крышки корпуса 4 и корпуса 1 осуществляется при помощи винтов 15 и гаек 16. Во избежание повреждения корпуса 1 под гайку 16 подкладывается шайба 17.

3.2 Расчет функции преобразования

В соответствии с законом электромагнитной индукции амплитудное значение ЭДС, наводимой магнитным полем во вторичной катушке равно

, (8)

где – число витков вторичной катушки;

щ – круговая частота, Гц;

– амплитудное значение переменной составляющей магнитного потока, Вб

Круговая частота щ определяется частотой вращения ротора и числом зубцов ротора k, причем

,Гц (9)


Магнитный поток в магнитопроводе, создаваемый катушкой подмагничивания определяется как

, Вб (10)

где - ток, протекающий в катушке подмагничивания, А;

– число витков катушки подмагничивания;

- полное магнитное сопротивление магнитопровода, 1/Гн.

Ток связан с напряжением питания катушки подмагничивания выражением

, А (11)

где - активное сопротивление провода катушки подмагничивания.

Активное сопротивление провода определяется выражением

, Ом (12)

где с – удельное сопротивление материала провода, Ом·м;

- диаметр провода катушки подмагничивания без изоляции, м;

– длина провода катушки подмагничивания, м.

Длина провода катушки определяется как

, м (13)

где - средняя длина витка катушки, определяемая по формуле


, м (14)

где - ширина стержня магнитопровода П-образного сердечника, м;

- толщина стержня магнитопровода П-образного сердечника, м.

Подставим (14) в (13), затем (13) в (12), получим

, Ом (15)

Подставим (15) в (11), получим

, А (16)

Полное магнитное сопротивление магнитопровода определяется суммой магнитного сопротивления П-образного сердечника , магнитным сопротивлением воздушных зазоров и магнитным сопротивлением ротора :

+ , 1/Гн (17)

Магнитное сопротивление П-образного сердечника определяется выражением

, 1/Гн (18)

где – длина средней магнитной линии в П-образном сердечнике, м;

- площадь поперечного сечения стержня магнитопровода П-образного сердечника, ;

- магнитная проницаемость П-образного сердечника, Гн/м.

Площадь поперечного сечения стержня магнитопровода П-образного сердечника определяется как

, (19)

Подставив (19) в (18), получим

, 1/Гн (20)

Магнитное сопротивление воздушного зазора определяется выражением

, Гн (21)

где – магнитные проводимости отдельных участков воздушного зазора, Гн.

Магнитная проводимость зазора между торцами магнитопроводов, образующих воздушный зазор, определяется по формуле

, Гн (22)

где д – величина воздушного зазора, м;

- абсолютная магнитная проницаемость физического вакуума, Гн/м;

c – ширина торца магнитопровода, м;

d – длина торца магнитопровода, м.

Магнитная проводимость между ребрами магнитопроводов определяется как

, 1/Гн (23)

Магнитная проводимость между углами магнитопроводов определяется как

, Гн (24)

Вычислим магнитную проводимость воздушного зазора

, Гн , (25)

откуда найдем магнитное сопротивление воздушного зазора

, 1/Гн (26)

Магнитное сопротивление ротора определим по формуле

, 1/Гн (27)

где - расстояние между противоположными торцами зубцов ротора, м

- магнитная проницаемость ротора, Гн/м.

Полное магнитное сопротивление магнитопровода будет определяться формулой


, 1/Гн (28)

Подставим выражения (28) и (16) в выражение (10), затем выражения (10) и (9) в выражение (8), получим

, В (29)

Упростив это выражение, получим

, В (30)

Учитывая, что ,

где - число оборотов ротора за одну минуту, об/мин,

получим

,В (31)

Подберем диаметр проволоки катушки подмагничивания, исходя из условия, что на каждый квадратный сантиметр наружной поверхности катушки должно приходиться мощность не более 0,02Вт.

Вычислим площадь наружной поверхности катушки по формуле

, (32)

где - длина катушки, м.

Получим

Тогда максимальная мощность, идущая на нагрев катушки, будет равна

Мощность, идущая на нагрев катушки, определяется из выражения

, Вт (33)

где - напряжение питания катушки подмагничивания, В

Примем диаметр провода катушки подмагничивания без изоляции равным 0,15мм, тогда диаметр провода с изоляцией будет равен 0,17мм. Рассчитаем количество витков катушки по формуле

, (34)

где - диаметр провода катушки с изоляцией, мм.

Получим

Рассчитаем сопротивление катушки подмагничивания по формуле (15), получим


Учитывая, что напряжение питания катушки 1В, вычислим мощность, идущую на нагрев катушки, по формуле (33)

Так как мощность, идущая на нагрев катушки не превышает макси-мальной, то оставляем выбранный диаметр провода, т.е. 0,15мм.

Построим график функции преобразования в диапазоне от 0 до 1000об/мин.

Еm

Рисунок 9 – Функция преобразования

3.3 Расчет тепловых расширений

Коэффициент объемного теплового расширения можно найти по формуле (35)

, (35)


где - коэффициент объемного теплового расширения,

T – установившаяся температура,

Т0 – первоначальная температура,

Vt – объем тела при установившейся температуре Т,

V0 – первоначальный объем тела.

Из этой формулы выразим объем тела после изменения температуры

(36)

Так как данный преобразователь работает при температурах от минус 20°С до плюс 40°С, то

Т0=-20°С

Т=40°С

Переводим температуру в кельвины и получаем

Т0=253 К

Т=313 К

Рассчитаем тепловое расширение сердечника.

Коэффициент объемного теплового расширения стали

V0=2·(50·10-3·10·10-3·2·10-3)=1·10-6 м3

Рассчитаем тепловое расширение шестерни.

Коэффициент объемного теплового расширения стали


V0=р·(6·10-3)2·5·10-3 -р·(2·10-3)2·5·10-3+8·2·10-3·3,5·10-3·5·10-3)=0,783·10-6 м3

Рассчитаем тепловое расширение вала.

Коэффициент объемного теплового расширения стали

V0=р·(2·10-3)2·5·10-3+р·(8·10-3)2·8·10-3 + р·(3·10-3)2·35·10-3

– 2·10-3·1,2·10-3·6·10-3=2,6465·10-6 м3

Рассчитаем тепловое расширение распорной втулки.

Коэффициент объемного теплового расширения стали

V0=р·(4·10-3)2·10·10-3-р·(3·10-3)2·10·10-3=0,2199·10-

6м3

3.4 Соединение зубчатой шестерни и вала

Вал необходимо запрессовать шестерню. Соответственно и зубчатая шестерня (рисунок 10) и вал (рисунок 11) будут изготовлены из стали.

Для изготовления шестерни используется Сталь 10895 ГОСТ 3836 – 83. Для изготовления вала используется Сталь 30 ГОСТ 10.50-88.

Рисунок 10 – Шестерня зубчатая

Рисунок 11 – Вал

Отверстие в шестерне под вал должно составлять: Ш4P7 мм.

Часть вала, которая будет запрессована в шестерню должна быть выполнена с допуском Ш4k7 мм.

Таким образом, мы имеем посадку с натягом Ш.

3.5 Расчет погрешностей

Определим погрешность индукционного тахометра. Основные погрешности будут возникать из-за величин, входящих в функцию преобразования, рассчитываемую по формуле (31)

,

Определим коэффициенты влияния величин, входящих в функцию преобразования по формуле (38)

, (38)

где Х – величина, для которой находится коэффициент влияния.

Зададимся частными погрешностями

,

,

,

,

,

,

Рассчитаем погрешность преобразователя г по формуле (30)


(39)

Подставив в формулу (39) значения, полученные по формуле (38), получаем погрешность преобразователя .


ЗАКЛЮЧЕНИЕ

Цель курсового проекта была достигнута. Разработан индукционный тахометр, расчетные характеристики которого удовлетворяют заданным. В работе были рассчитаны основные элементы конструкции индукционного тахометра, построена функция преобразования, создана структурная схема преобразователя. Также в работе был произведен обзор преобразователей частоты вращения, выявлены их достоинства и недостатки. Сделана деталировка основных элементов индукционного тахометра.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Анурьев, В.И., Справочник конструктора-машиностроителя: В 3-х т. Т.1. [Текст] / 5-е изд., перераб. и доп. – М.: Машиностроение, 1978 – 728 с., ил.

2 Атамалян, Э. Г., Приборы и методы измерения электрических величин: Учеб. пособие [Текст] / Э. Г. Атамалян. – М.: Высш. школа, 1982 – 223 с., ил.

3 Беляев, В.Н. Краткий справочник машиностроителя / В.Н. Беляев, Л.С. Борович, В.В. Досчатов и др. – М.: Машиностроение, 1966. – 775 с., ил.

4 Боднер, В.А. Измерительные приборы / В.А. Боднер, А.В. Алферов. – М.: Изд-во стандартов, 1986. – 392 с.

5 Воронцов, Л.Н. Теория и проектирование контрольных автоматов / Л.Н. Воронцов, С.Ф. Корндорф, В.А. Трутень и др. – М.: Высшая школа, 1980. – 560 с.

6 Гжиров, Р.И. Краткий справочник конструктора / Р.И. Гжиров. – Л.: Машиностроение. 1984. – 464 с.

7 Касаткин, А.С., Немцов, М.В., Электротехника: Учеб. пособие для вузов. – 4-е изд., перераб. – М.: Энергоатомиздат, 1983. – 440 с., ил.

8 Костенко, М. П., Пиотровский, Л. М., Электрические машины. В 2-х ч. Ч. 1 – Машины постоянного тока. Трансформаторы. Учебник для студентов высш. техн. учеб. заведений. – Изд. 3-е, перераб. – Л.: Энергия, 1972.

9 Лёвшина, Е.С., Новицкий, П.В., Электрические измерения физических величин: (Измерительные преобразователи): Учеб. пособие для вузов. – Л.: Энергоатомиздат. Ленингр. отд-ние, 1983.- 320 с., ил.

10 Ногачева, Т.И., Методические указания к выполнению курсового проекта по дисциплине «Физические основы получения информации» для специальности 200101 «Приборостроение» [Текст] / Т.И. Ногачева. – Орел: ОрелГТУ, 2006 – 18 с.

11 Осадчий, Е.П. Проектирование датчиков для измерения механических величин / Под ред. Е.П. Осадчего. – М.: Машиностроение, 1979. – 480 с., ил.

12 Проектирование электрических машин: Учеб для вузов / И.П. Копылов, Б.К. Клоков, В.П. Морозкин, Б.Ф.Токарев; под ред. И.П. Копылова. – 3-е изд., испр. и доп. – Высш. шк., 2002. – 757 с.: ил.

13 Справочное руководство по черчению / В.Н. Богданов, А.П. Малежик и др. – М.: Машиностроение, 1989. – 864 с.: ил.

14 Электрические измерения неэлектрических величин / А.М. Туричин, П.В. Новицкий, Е.С. Лёвшина и др. – Изд. 5-е, перераб. и доп. – Л.: «Энергия», 1975. – 576 с., ил.


Приложение А



Приложение Б


Приложение В


Приложение Г


Приложение Д


Приложение Е



Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно