Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Основні правила диференціювання Таблиця похідних

Тип Реферат
Предмет Астрономия
Просмотров
1044
Размер файла
97 б
Поделиться

Ознакомительный фрагмент работы:

Основні правила диференціювання Таблиця похідних

Пошукова робота

на тему:

Основні правила диференціювання. Таблиця похідних.

План

  • Основні правила диференціювання.
  • Похідні від елементарних функцій.
  • Похідна від степеневої функції.
  • Похідна від степеневої та логарифмічної функції.
  • Похідні від тригонометричних функцій.
  • Похідні від обернених тригонометричних функцій.
  • Похідна від складної функції.

1. Правила диференціювання

Операція знаходження похідної від даної функції називається диференціюванням цієї функції. Доведемо ряд теорем, які дають основні правила знаходження похідних від функцій.

10. Похідна від аргументу . Покладемо , тоді . Тому .

Отже, якщо , то

. (6.14)

1. Похідна від сталої функції .

Значення цієї функції у точках і рівні між собою при будь-якому . Тому приріст , а отже й .

Перейшовши до границі, в останній рівності при маємо

.

Границя відношення при існує і дорівнює нулю. Тому існує й похідна від цієї функції в довільній точці , яка теж дорівнює нулю, тобто

. (6.15) 3. Похідна від суми.

Теорема. Якщо функції в точці мають похідні, то функція також в цій точці має похідну і ця похідна дорівнює

. (6.16)

Д о в е д е н н я. Надамо деякого . Тоді функції матимуть прирости , функція - приріст . Знайдемо відношення

.

Перейдемо в цій рівності до границі при . Внаслідок того, що в точці згідно з умовою теореми мають похідну, то

, .

Тому

Отже, в цій точці існує похідна від функції і вона дорівнює .

Теорему доведено.

Наслідок. Похідна від суми скінченого числа функцій дорівнює сумі похідних від цих функцій, якщо похідні даних функцій існують, тобто

(6.17)

4. Похідна від добутку.

Теорема. Якщо функції в точці мають похідні, то в цій точці функція також має похідну:

. (6.18)

Д о в е д е н н я. Надамо деякого приросту . Тоді функції матимуть прирости , а функція приріст

Знайдемо відношення

Перейдемо в цій рівності до границі . За умови теореми

а

Отже,

Теорему доведено.

Наслідок. Постійний множник можна виносити за знак похідної, тобто, якщо , то

(6.19)

5. Похідна від частки.

Теорема. Якщо функції в точці мають похідні і , то функція також у точці має похідну і похідна дорівнює

(6.20)

Д о в е д е н н я. Надамо приросту . Тоді функції матимуть відповідно прирости , а функція - приріст

Знайдемо відношення

За умовою теореми

а , тому

Теорему доведено.

Наслідок 1. Якщо знаменник дробу - стала величина, то

(6.21)

Наслідок 2. Якщо чисельник дробу стала величина, то

(6.22)

6. Похідна від оберненої функції.

Теорема. Нехай функція задовольняє всім умовам теореми про існування оберненої функції і в точці має похідну . Тоді обернена до неї функція у точці має також похідну: .

Д о в е д е н н я. Надамо приросту . Тоді функція дістане приріст , причому, внаслідок монотонності функції , матимемо , якщо . Тоді відношення можна записати так: Перейдемо в цій рівності до границі при . Внаслідок неперервності оберненої функції , тобто

Отже, від функції в точці існує похідна:

(6.23)

Теорему доведено.

Якщо функція має похідну в довільній точці і

, то формула (6.23) справджується для цих точок

або, що те саме,

(6.24)

У формулі (6.24) похідні знаходяться за різними змінними: - похідна від до , а - похідна від до . Тому формулу (6.24) записують

(6.25)

Нижній індекс показує, за якою змінною знаходиться похідна.

Для зручності поміняємо у формулі (6.25) місцями і . Остаточно матимемо таку формулу для похідної від оберненої функції:

(6.26)

2. Похідні від елементарних функцій

Похідна від степеневої функції

Випадок натурального показника. Нехай , де - натуральне число. Тоді функція визначена на всій числовій осі. Отже, візьмемо довільну точку і надамо їй приросту . Тоді функція матиме приріст :

Розкриємо за формулою бінома Ньютона:

Знайдемо відношення

Перейшовши в цій рівності до границі при , дістаємо

Отже похідна від степеневої функції з натуральним показником існує і дорівнює

Випадок довільного показника. Нехай є довільне дійсне число. Тоді область існування функції залежить від .

Нехай - область існування функції . Візьмемо довільне , але (випадок розглянемо окремо). Тоді приріст дорівнює

Знайдемо відношення

або

(6.28)

де .

Перейдемо до границі у рівності (6.28) при . Зауважимо, що коли , то й . Тому

(6.29)

Обчислимо окремо

Для цього введемо таке позначення:

причому , якщо . Тоді звідки . Тоді

Проте внаслідок неперервності логарифмічної функції маємо

Отже,

Повертаючись до співвідношення (6.29), маємо

тобто якщо і , то

(6.30)

Розглянемо випадок, коли . Якщо , то точка не входить в область існування функції . Тому розглядатимемо і . Знайдемо приріст функції в точці :

тоді

Звідси випливає, що у випадку границя відношення приросту функції до приросту аргументу, коли приріст аргументу прямує до нуля, існує і дорівнює нулю:

Якщо , то границя не існує, тобто у випадку функція в точці похідної немає.

Проте, якщо формально у формулі (6.30) покласти , то дістанемо той самий результат.

Отже, для похідної від степеневої функції ми маємо таке правило: похідна від степеневої функції дорівнює показнику, помноженому на цю функцію з показником, на одиницю меншим.

3. Похідна від показникової та логарифмічної функцій

1. Нехай маємо показникову функцію .

Знайдемо в довільній точці приріст :

Тоді

Перейдемо тут до границі при . Маємо

Таким чином, похідна від показникової функції існує в довільній точці і дорівнює

(6.31)

Зокрема,

(6.32)

2. Нехай маємо логарифмічну функцію , де . Згідно з означенням логарифмічної функції маємо таку рівність:

Оскільки , то

Отже,

(6.33)

Зокрема,

(6.34)

4. Похідні від тригонометричних функцій

1.. Знайдемо приріст функції в довільній точці :

Знайдемо відношення

Перейдемо в цій рівності до границі при :

Отже похідна від функції існує в довільній точці і дорівнює

(6.35)

2.. Аналогічно доводиться, що від функції в довільній точці існує похідна, яка дорівнює

(6.36)

3. Зобразимо у вигляді

Скориставшись формулою (6.20), маємо

Отже,

(6.37)

4.. Аналогічно можна довести, що

(6.38)

5. Похідні обернених тригонометричних функцій

1., де , .

Тоді згідно з означенням функції маємо таку рівність:

причому похідна при не дорівнює нулю. Тому для знаходження похідної від можна скористатися формулою (6.24):

Оскільки , то набуває тільки додатних значень. Тоді можна записати:

Отже, остаточно

(6.39)

2. Аналогічно можна вивести формули похідних

(6.40)

(6.41) (6.42)

6. Похідна від складної функції

Функція однієї змінної.

Теорема. Нехай маємо складну функцію і нехай: 1) зовнішня функція в точці має похідну (по ) ; 2) внутрішня функція в точці має похідну (по ) . Тоді складна функція в точці також має похідну (по ), яка дорівнює добутку похідних від зовнішньої і внутрішньої функції, тобто

або

(6.43)

Правило знаходження похідної від складної функції: щоб знайти похідну від складної функції, треба знайти похідну від зовнішньої функції за зовнішнім аргументом і результат помножити на похідну від внутрішньої функції за внутрішнім аргументом.

Зауваження. Ця теорема може бути узагальнена і на той випадок, коли аргумент внутрішньої функції є, в свою чергу, функцією від іншого аргументу. Так, якщо маємо функції і кожна з них у відповідних точках має похідні, то функція має похідну по , яка дорівнює

Приклади.

1. Знайти похідну від функції .

Р о з в ’ я з о к. Введемо позначення . Тоді матимемо складну функцію і задовольняють умовам теореми для . Отже,

2. Знайти похідну від функції .

Р о з в ’ я з о к. Введемо позначення . Тоді матимемо складну функцію , .

Тому

Похідна від степенево-показникової функції.

Означення. Функція , де і - функції , називається степенево-показниковою функцією.

Степенево-показникову функцію не можна диференціювати ні за формулою похідної степеневої функції, ні за формулою показникової функції, оскільки вона не є ні тою ні другою. Одержимо окрему формулу.

Нехай дана функція , де . Прологарифмувавши обидві частини рівності, маємо

Диференціюємо обидві частини цієї рівності по як складні функції:

Звідси

або

(6.44)

Правило диференціювання степенево-показникової функції: щоб продиференціювати степенево-показникову функцію, достатньо знайти від неї похідну як від показникової функції (тимчасово вважаємо основу сталою), похідну як від степеневої функції (вважаємо показник сталим) та результати додати.

Приклади.

1. Знайти похідну від функції .

Р о з в ’ я з о к.

2. Знайти похідну від функції .

Р о з в ’ я з о к.

Зауваження. Застосований в цьому параграфі прийом для знаходження похідних, коли спочатку знаходять похідну логарифму даної функції, широко використовується при диференціюванні функцій. Цей прийом часто спрощує обчислення.

Приклад.

Знайти похідну від функції

Р о з в ’ я з о к. Логарифмуючи, знаходимо

Диференціюємо обидві частини цієї рівності:

Звідси

Похідна від складної функції кількох змінних.

Із означення безпосередньо випливає правило знаходження частинних похідних функції : щоб знайти частинну похідну від функції за одним із її аргументів, потрібно обчислити похідну від функції за цим аргументом, вважаючи інші аргументи постійними .

Приклади.

1. Знайти частинні похідні від функції

Р о з в ’ я з о к.

2. Знайти частинні похідні від функції

Р о з в ’ я з о к.

Нехай задана функція , аргументи якої і є функціями незалежної змінної :

Нехай має по і неперервні частинні похідні і і існують і . Тоді можна довести існування похідної складної функції і одержати формулу для її обчислення:

(6.45)

Приклад.

Знайти похідну від функції , якщо , .

Р о з в ’ я з о к.

Якщо, зокрема, , , тобто, якщо один із аргументів функції є незалежна змінна, а другий - його функція, то формула (6.45) (покласти в ній ) дає вираз повної похідної від функції по :

(6.46)

Нехай є складною функцією не однієї, а кількох незалежних змінних і . Нехай має неперервні частинні похідні по і по , а і мають частинні похідні по . За таких умов формула диференціювання складної функції записується так:

(6.47)

....

Приклад.

Знайти частинні похідні від функції , якщо , .

Р о з в ’ я з о к.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно