Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Статистические методы обработки выборочных данных наблюдений или экспериментов

Тип Реферат
Предмет Экономика
Просмотров
913
Размер файла
469 б
Поделиться

Ознакомительный фрагмент работы:

Статистические методы обработки выборочных данных наблюдений или экспериментов

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ)

Институт транспортной техники и организации производства

(ИТТОП)

Кафедра: «Локомотивы и локомотивное хозяйство»

Курсовой проект

на тему:

«Статистические методы обработки выборочных данных наблюдений или экспериментов»

Выполнил: студент Краснов М.А.

группы ТЛТ-451

Принял: Пузанков А.Д.

Москва 2009


СОДЕРЖАНИЕ

1. ПЕРВИЧНЫЙ АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

2. ПОСТРОЕНИЕ ЭМПИРИЧЕСКОЙ ПЛОТНОСТИ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ АНАЛИЗИРУЕМОЙ ВЕЛИЧИНЫ И РАСЧЕТ ЕЕ ХАРАКТЕРИСТИК

3. ОПРЕДЕЛЕНИЕ ВИДА ЗАКОНА РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ И РАСЧЕТ ЕГО ПАРАМЕТРОВ ПРИ ПОМОЩИ МЕТОДА МОМЕНТОВ

4. ОПРЕДЕЛЕНИЕ ВИДА ТЕОРЕТИЧЕСКОГО ЗАКОНА РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ ГРАФИЧЕСКИМ МЕТОДОМ


1. Первичный анализ экспериментальных данных

Запишем полученные значения в вариационный ряд в возрастающем порядке:

Таблица 1.

16,4

21,6

35,46

38,76

39,84

40,65

44,25

46,73

47,62

50,25

50,25

51,02

51,8

55,22

55,25

55,55

61,73

63,3

64,93

67,56

68,5

68,5

71,94

73

73,53

73,53

74,07

77,52

78,12

78,74

78,74

80,64

85,47

86,2

87,72

90,1

92,6

94,34

95,24

96,15

99,01

99,01

106,4

108,6

116,28

133,3

135,13

137

144,93

149,25

153,84

161,3

166,7

172,4

172,4

175,44

178,6

178,6

185,18

192,3

208,33

212,76

227,27

232,56

238,1

243,9

256,41

277,8

277,8

285,7

285,71

285,71

322,6

322,6

344,83

370,4

370,4

370,4

384,6

420,6

526,3

555,55

588,23

943,4

xmax = 943,4; xmin = 16,4

Результат последних двух измерений вызывает сомнения. Поэтому выполняем проверку:

Величину выборочного среднего находим из соотношения:

(1)

Корень квадратный из дисперсии, взятый с положительным знаком, называется среднеквадратическим отклонением и рассчитывается по формуле:

(2)

Упрощённая проверка сомнительного результата на брак выполняется из условия:

Таким образом, по упрощенной проверке результат сомнительного измерения браком являются последнее одно значение, отбрасываем их и пересчитываем и :

Проверяем по упрощённой проверки:

Таким образом, по упрощенной проверке результат сомнительного измерения браком являются последние два значения, отбрасываем их и пересчитываем и :

Таким образом, по упрощенной проверке результат сомнительного измерения браком являются последнее одно значение, отбрасываем их и пересчитываем и :

Таким образом, по упрощенной проверке результат сомнительного измерения не является браком.

Так же выполним подобную проверку с помощью критерия Ирвина:

Таким образом, по расчётам обеих проверок результат последнего сомнительного измерения не является браком.

Из этого следует, что нужно произвести повторный расчёт, но уже без данного измерения:

2. Построение эмпирической плотности распределения случайной анализируемой величины и расчёт её характеристик

Определяем размах имеющихся данных, т.е. разности между наибольшим и наименьшим выборочным значениями (R = Xmax – Xmin):

Выбор числа интервалов группировки k при числе наблюдений n<100 – ориентировочное значение интервалов можно рассчитать с использованием формулы Хайнхольда и Гаеде:

Тогда ширина интервала:


Результат подсчёта частот и характеристик эмпирического распределения

Таблица 2.

Границы интервала

группировки

Ср.знач.

интерв.

Распределение

данных

fi

U

U*f

U^2*f

16,4…61,31

38,86

////////////////

16

-1

-16

16

61,31…106,22

83,77

//////////////////////////

26

0

0

0

106,22…151,13

128,68

////////

8

1

8

8

151,13…196,04

173,59

//////////

10

2

20

40

196,04…240,96

218,50

/////

5

3

15

45

240,96…285,87

263,41

/////

5

4

20

80

285,87…330,78

308,32

////

4

5

20

100

330,78…375,69

353,23

////

4

6

24

144

375,69…420,60

398,14

//

2

7

14

98

ИТОГО

80

105

531

Принимаем «ложный нуль» x0=83,77 и обозначаем нулем тот интервал, которому соответствует максимальная частота (f=26). Далее, для интервалов, следующих к наименьшему наблюдаемому значению вписываем -1, -2 … и 1, 2, … для интервалов, следующих к наибольшему значению наблюдаемой величины.

Выборочное среднее х и среднеквадратическое отклонение Sx рассчитываем, используя следующие выражения:

(3)


Для построения гистограммы, приведённой на рис.1, по оси абсцисс в выбранном масштабе отмечаем границы интервалов. Левая ось размечается масштабом частот, а на правую, в случае необходимости, можно нанести шкалу относительных частот. На чистом поле гистограммы указываются значения: числа данных; среднего арифметического; среднеквадратического отклонения.

Рис.1

Помимо гистограммы эмпирические данные измерений случайной величины могут быть представлены в виде кумулятивной кривой функции распределения вероятностей. Для этого данные, представленные в табл.1., должны быть дополнены частостями (см. табл.2.).

Частость находим из соотношения:

Таблица частот f и частостей ω.

Таблица 3.

Границы интервала

группировки

Частота,fi

Частость,

ω i

Накопленная

частость, ω н

16,4…61,31

16

0,20

0,20

61,31…106,22

26

0,33

0,53

106,22…151,13

8

0,10

0,63

151,13…196,04

10

0,13

0,75

196,04…240,96

5

0,06

0,81

240,96…285,87

5

0,06

0,88

285,87…330,78

4

0,05

0,93

330,78…375,69

4

0,05

0,98

375,69…420,60

2

0,03

1,00

ИТОГО

80

1

Рис. 2


3. Определение вида закона распределения случайной величины и расчёт его параметров при помощи метода моментов

Экспоненциальный (нормальный) закон распределения

Параметр закона распределения:

Таблица 4

xi

103 км

fi

шт

λ*xi

e-λ*xi

φ(xi)

10-6

fi’

шт

1

38,86

16

0,270

0,763

0,531

19,08

0,50

2

83,77

26

0,583

0,558

0,388

13,96

10,39

3

128,68

8

0,895

0,408

0,284

10,21

0,48

4

173,59

10

1,208

0,299

0,208

7,47

0,86

5

218,50

5

1,520

0,219

0,152

5,47

0,04

6

263,41

5

1,833

0,160

0,111

4,00

0,25

7

308,32

4

2,145

0,117

0,081

2,93

0,39

8

353,23

4

2,458

0,086

0,060

2,14

1,62

9

398,14

2

2,770

0,063

0,044

1,57

0,12

ИТОГО:

80

14,64

Рис. 4


Нормальный закон распределения двухпараметрический, число степеней свободы υ = 7 и = 14,067.

Так как χ2 > χ0,052, то гипотеза о принадлежности эмпирической выборки значений, экспоненциальному закону распределения отвергается

Распределение Вейбулла - Гнеденко

Величина выборочного коэффициента вариации:

По данным приложения таблица П1,2:

Таблица 5

Xi

103 км

fi

шт

xi/a

a* φ(xi)

φ(xi)

10-6

fi’

шт

1

38,86

16

0,246

0,6944

4,4017

15,81

0,00

2

83,77

26

0,531

0,7197

4,5618

16,39

5,63

3

128,68

8

0,816

0,6085

3,8567

13,86

2,48

4

173,59

10

1,100

0,4637

2,9393

10,56

0,03

5

218,50

5

1,385

0,3293

2,0870

7,50

0,83

6

263,41

5

1,670

0,2213

1,4029

5,04

0,00

7

308,32

4

1,954

0,1422

0,9014

3,24

0,18

8

353,23

4

2,239

0,0879

0,5570

2,00

2,00

9

398,14

2

2,524

0,0525

0,3325

1,19

0,54

ИТОГО:

80

75,60

11,69


Рис. 5

Нормальный закон распределения двухпараметрический, число степеней свободы υ = 6 и = 12,592.

Так как χ2 > χ0,052, то эмпирическая выборка значений пренадлежит закону распределения Вейбулла - Гнеденко

Нормальный (Гауссовский) закон распределения

Таблица 6

Xi

103 км

fi

ti

φ(ti)

10-2

φ(xi)

fi’

щт

1

38,86

16

-1,025

0,231

0,101

8,09

7,72

2

83,77

26

-0,586

0,328

0,144

11,52

18,18

3

128,68

8

-0,147

0,386

0,169

13,53

2,26

4

173,59

10

0,292

0,374

0,164

13,11

0,74

5

218,50

5

0,731

0,298

0,131

10,48

2,86

6

263,41

5

1,169

0,197

0,086

6,91

0,53

7

308,32

4

1,608

0,107

0,047

3,75

0,02

8

353,23

4

2,047

0,048

0,021

1,68

3,18

9

398,14

2

2,486

0,018

0,008

0,62

3,04

ИТОГО:

80

69,71

38,54


Рис. 6

Нормальный закон распределения двухпараметрический, число степеней свободы υ = 6 и = 12.592.

Так как χ2 > χ0,052, то гипотеза о принадлежности эмпирической выборки значений, нормальному (Гауссовскому) закону распределения отвергается

Логарифмически - нормальный закон распределения

Значения средне-выборочное и средне-квадратичное:

Таблица 7

Xi

103 км

fi

ti

φ(ti)

φ(xi)

fi’

щт

1

38,86

16

-1,481

0,133

4,808

17,28

0,094

2

83,77

26

-0,404

0,367

6,155

22,12

0,682

3

128,68

8

0,198

0,391

4,263

15,32

3,494

4

173,59

10

0,618

0,329

2,663

9,57

0,019

5

218,50

5

0,941

0,256

1,645

5,91

0,140

6

263,41

5

1,203

0,193

1,030

3,70

0,455

7

308,32

4

1,423

0,144

0,659

2,37

1,126

8

353,23

4

1,614

0,108

0,430

1,55

3,892

9

398,14

2

1,782

0,081

0,287

1,03

0,908

ИТОГО:

80

10,81

Рис. 7

Нормальный закон распределения двухпараметрический, число степеней свободы υ = 6 и = 12.592.

Так как χ2 < χ0,052, то эмпирическая выборка значений принадлежит логарифмически-нормальному закону распределения

4. Определение вида теоретического закона распределения случайной величины графическими методами

Расчёт координат эмпирических точек заданной выборки


Таблица 8.

№ п/п

Среднее значение

интервала xi , 103 км

fi , шт

Σ fi

F(x)= Σ fi/n+1

1

38,86

16

16

0,198

2

83,77

26

42

0,519

3

128,68

8

50

0,617

4

173,59

10

60

0,741

5

218,50

5

65

0,802

6

263,41

5

70

0,864

7

308,32

4

74

0,914

8

353,23

4

78

0,963

9

398,14

2

80

0,988

Используя полученные в табл.4. данные, строим вероятностную сетку и выполняем проверку согласованности.

Выбор масштаба построения вероятностной сетки:

· ширина графика (ось абсцисс) А = 140 мм ;

· высота графика (ось ординат) Н = 180 мм .

Нормальный закон распределения

Масштаб значений оси абсцисс устанавливается на основе выражения:

Таблица 9

P = F(x)

0,5

0,6

0,7

0,8

0,8413

0,85

0,903

y = Q-1(P)

0

0,25

0,52

0,85

1

1,05

1,3

Ky (P), мм

0

7,5

15,6

25,5

30

31,5

39

P = F(x)

0,96

0,971

0,98

0,991

0,9953

0,997

0,9987

y = Q-1(P)

1,75

1,9

2,05

2,35

2,6

2,75

3

Ky(P), мм

52,5

57

61,5

70,5

78

82,5

90


Лгарифмически - нормальный закон распределения

Масштаб значений оси абсцисс устанавливается на основе выражения:


Таблица 10

Границы интервала

xi

103 км

1

418,78…475,69

38,86

456,01

0,198

2

475,69…499,40

83,77

489,15

0,519

3

499,40…514,62

128,68

507,68

0,617

4

514,62…525,85

173,59

520,60

0,741

5

525,85…534,75

218,50

530,52

0,802

6

534,75…542,12

263,41

538,59

0,864

7

542,12…548,42

308,32

545,38

0,914

8

548,42…553,91

353,23

551,25

0,963

9

553,91…558,78

398,14

556,42

0,988


Экспоненциальный (нормальный) закон распределения

Таблица 11

P = F(x)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Ky (P), мм

0,0

3,2

6,7

10,7

15,3

20,8

27,5

36,1

P = F(x)

0,8

0,9

0,95

0,97

0,98

0,99

0,995

0,9975

Ky(P), мм

48,3

69,1

89,9

105,2

117,4

138,2

158,9

179,7


Распределение Вейбулла – Гнеденко

Таблица 12

P = F(x)

0,03

0,04

0,06

0,1

0,2

0,3

0,4

y = Q-1(P)

-3,5

-3,2

-2,8

-2,25

-1,5

-1,03

-0,7

Ky (P), мм

-118,8

-108,6

-95,0

-76,4

-50,9

-35,0

-23,8

P = F(x)

0,5

0,632

0,78

0,9

0,97

0,955

0,999

y = Q-1(P)

-0,36

0,00

0,41

0,83

1,25

1,66

1,93

Ky(P), мм

-12,2

0,00

13,9

28,2

42,4

56,3

65,5



Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 368 оценок star star star star star
среднее 4.9 из 5
ФГБО ВО БрГУ
Анна, большая молодец, заказ выполнен досрочно и без замечаний, рекомендую
star star star star star
РГЭУ РИНХ
Очень хороший реферат, было все подробно описано. в общем то что надо! спасибо)
star star star star star
РТА СПБ
Огромное спасибо за качественно выполненную работу и оформленную в соответствии с требован...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Выполнить контрольную по Английскому. С-07505

Контрольная, Английский язык

Срок сдачи к 17 янв.

только что

Тема: Воспитание дружеских взаимодействий дошкольников

Курсовая, Педагогика

Срок сдачи к 16 янв.

1 минуту назад

Выполнение 6 работ в программе Statistica

Контрольная, Программные статистические комплексы

Срок сдачи к 20 февр.

1 минуту назад

Решить 3 задачи.

Решение задач, Физика

Срок сдачи к 22 янв.

1 минуту назад
1 минуту назад

Контрольная под дисциплине Механика жидкости и газа

Контрольная, Механика жидкости и газа

Срок сдачи к 20 янв.

1 минуту назад

Производственная практика

Отчет по практике, Психология и педагогика

Срок сдачи к 18 янв.

2 минуты назад
2 минуты назад

Выполнить контрольную по Английскому. С-07504

Контрольная, Английский язык

Срок сдачи к 17 янв.

2 минуты назад

Решить задачи

Решение задач, Международное право

Срок сдачи к 16 янв.

2 минуты назад

Написать отзыв по статье на 1,5-2 листа

Другое, Дефектология

Срок сдачи к 18 янв.

3 минуты назад

Контрольная работа "Расчёт теплопритоков в охлаждаемую камеру"

Контрольная, Теплотехника и хладотехника

Срок сдачи к 19 янв.

4 минуты назад

3 задачи

Решение задач, Теоретическая механика

Срок сдачи к 18 янв.

4 минуты назад

Теплофизика

Решение задач, Теплофизика

Срок сдачи к 15 янв.

5 минут назад

Лабораторная работа № 1.1 Модуль: Основы логического мышления

Решение задач, Введение в специальность, логика

Срок сдачи к 15 янв.

5 минут назад

Том каулитц

Контрольная, Математика

Срок сдачи к 18 янв.

6 минут назад

сделать лабораторные работы

Лабораторная, Цифровая культура в профессиональной деятельности, культурология

Срок сдачи к 25 янв.

6 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно