Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Определение момента инерции твёрдых тел 2

Тип Реферат
Предмет Физика
Просмотров
1258
Размер файла
50 б
Поделиться

Ознакомительный фрагмент работы:

Определение момента инерции твёрдых тел 2

Томский межвузовский центр дистанционного образования

Томский государственный университет систем управления и радиоэлектроники (ТУСУР)

Кафедра промышленной электроники (ПрЭ)

Лабораторная работа по курсу "Общая физика"

ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТВЁРДЫХ ТЕЛ

Выполнил

Студент гр.

Специальности 210106

.

1. ЦЕЛЬ РАБОТЫ

Целью настоящей работы является определение момента инерции твердых тел и экспериментальная проверка справедливости теоремы Штей­нера на примере физического маятника.

2. ОПИСАНИЕ УСТАНОВКИ И МЕТОДИКИ ЭКСПЕРИМЕНТА


Для экспериментальной проверки теоремы Штейнера и определения момента инерции в данной работе используется стандартная установка универсального маятника ФПМО - 4. Это настольный прибор (рис. 4.1), на вертикальной стойке основания 1 которого крепится кронштейн 2, который имеет возможность поворота вокруг стойки на 360° и фиксация в любом выбранном положении. С одной стороны кронштейна 2 подвешен математический маятник, а с другой - физический. Математический маятник представляет собой металлический шарик 3 на бифилярном подвесе 4. Физический маятник - стальной стержень 5, подвешенный на опорной призме 6. Опорная призма 6 может перемещаться по всей длине стержня и фиксироваться в требуемом положении.

Стержень 5 имеет кольцевые проточки, которые служат для надежной фиксации опорных призм. Установка снабжена фотоэлектрическим датчиком 7, который закреплен на вертикальной стойке с помощью кронштейна 8 и имеет возможность перемещаться как вдоль, так и вокруг стойки и фиксироваться в любом положении. Датчик предназначен для выдачи сигналов на Миллисекундомер 9. Физический Миллисекундомер выполнен самостоятельным прибором с цифровой индикацией времени и количества полных периодов колебаний маятника.

3. ОСНОВНЫЕ РАСЧЕТНЫЕ ФОРМУЛЫ

Средняя величина периода колебаний маятника:

T = t / n , (3.1)

где,

t - продолжительность колебаний;

n - число колебаний за время t.

Формула для экспериментального расчета момента инерции прямого тонкого стержня:

, (3.2)

где,

T - период колебаний маятника;

l - расстояние от центра масс до точки подвеса маятника;

m - Масса маятника;

g - Ускорение свободного падения.

Истинное значение величины t лежит в интервале tизм - s(t) ≤ t ≤ tизм + s(t), где tизм– значение величины t, полученное при измерении, а величина s(t) – абсолютная погрешность измерения величины t. Это неравенство принято записывать в следующем виде.

t = tизм ± sсис(t) (3.3)

где,

sсис(t) – систематическая абсолютная погрешность.

Мерой точности результатов измерений является относительная погрешность. Формула для расчета погрешности косвенных измерений:

ε(I) = [ε2(T2) + ε2(m) + ε2(l)] 1/2 (3.4)

ε(T2)=2 ε(T) (3.5)

ε(T)= ε(t) (3.6)

Класс точности прибора не указан, выбираем значение абсолютной погрешности l как половину цены деления (0,005 м).

ε(l)= ∆l/l (3.6)

m=m*d(m)/100% (3.7)

I=I*ε(I)=I*[ε2(T2) + ε2(m) + ε2(l)] 1/2 (3.8)
Доверительный интервал для момента инерции:

σ(I) = ε(I)*I (3.9)

Формула для теоретического расчета момента инерции прямого тонкого стержня длиной d и массой m относительно оси, перпендикулярной к стержню и проходящей через его середину:

I0=ml2/12 (3.10)

Выражение теоремы Штейнера:

I = I0 + ml2 (3.11)

где, I0 –момент инерции относительно оси, проходящий через центр масс;

l – расстояние между осями.

∆I=I*[ε2(m)+ε2(l2)]1/2 (3.12)

ε(l2)=2ε(l) (3.13)

Доверительный интервал для l2:

σ(l2) =ε(l2)*l2=2 ε(l)* l2(3.14)

4. РЕЗУЛЬТАТЫ РАБОТЫ И ИХ АНАЛИЗ.

Результаты прямых и косвенных измерений представлены в таблице.

Таблица № 1

Номер опытаNt, cT, cl2, м2I, кг×м2Примечание
11519,0871,2720,08410,0417

m = 358 г

s(t) = ± 2 мс

d(m) = 2%

21518,5671,2370,06250,0340
31518,1661,2110,04410,0274
41518,0861,2060,02890,0220
51518,5271,2350,01690,0176
61520,1291,3420,00810,0144
71525,0561,6700,00250,0124

На основании полученных опытных данных рассчитаем среднюю величину периода колебаний маятника по формуле (3.1) и результаты занесём в таблицу 1.

Исходя из опытных данных таблицы 1, зная массу маятника m и расстояние от центра масс до точки подвеса маятника l, вычислим по формуле (3.2) значение момента инерции маятника I.

Рассчитаем относительные погрешности оценки точности измерений, учитывая абсолютную погрешность замера времени колебаний σ(t)= ±2мс, относительную погрешность определения массы δ(m)=2% по формулам (3.3) - (3.13):

ε(m) = 7,16/358 = 0,02

ε(l)1 = 0,005/0.29 = 0,017

ε(l)2 = 0,005/0.25 = 0,02

ε(l)3 = 0,005/0.21 = 0,024

ε(l)4 = 0,005/0.17 = 0,029

ε(l)5 = 0,005/0.13 = 0,038

ε(l)6 = 0,005/0.09 = 0,055

ε(l)7 = 0,005/0.05 = 0,1

ε(T2)1 = 2ε(T)1= 2* ε(t) = 2*0,002/19,087=2,096 *10-4

ε(T2)2 = 2ε(T)2= 2*0,002/18,567 = 2,154 *10-4

ε(T2)3 = 2ε(T)3= 2*0,002/18,166 = 2,202 *10-4

ε(T2)4 = 2ε(T)4= 2*0,002/18,086 = 2,212 *10-4

ε(T2)5 = 2ε(T)5= 2*0,002/18,527 = 2,159 *10-4

ε(T2)6 = 2ε(T)6= 2*0,002/20,129 = 1,987 *10-4

ε(T2)7 = 2ε(T)7= 2*0,002/25,056 = 1,596 *10-4

Рассчитаем относительную погрешность момента инерции по формуле (3.4)

ε(I)1 =[(4,393 * 10-8) + 0,0004 + 0,000289]1/2 = 0,0262

ε(I)2 =[(4,640 * 10-8) + 0,0004 + 0,0004]1/2 = 0,0283

ε(I)3 =[(4,849 * 10-8) + 0,0004 + 0,000576]1/2 = 0,0312

ε(I)4 =[(4,893 * 10-8) + 0,0004 + 0,000841]1/2 = 0,0352

ε(I)5 =[(4,661 * 10-8) + 0,0004 + 0,001444]1/2 = 0,0429

ε(I)6 =[(3,948 * 10-8) + 0,0004 + 0,003025]1/2 = 0,0585

ε(I)7 =[(2,547 * 10-8) + 0,0004 + 0,01]1/2 = 0,1020

Рассчитаем доверительный интервал σ(I) для каждого значения момента инерции I по формуле (3.9) и результаты занесем в таблицу 2.

Определим t, l2, I с учетом доверительных интервалов и результаты занесем в таблицу 2 для каждого значения.

Таблица доверительных интервалов.

Таблица № 2

№ измеренияl2 - σ(l2)l2 + σ(l2)σ(I)I - σ(I)I + σ(I)
1.0,08120,08700,00110,04060,0428
2.0,06000,06500,00090,03310,0349
3.0,04200,04620,00080,02670,0282
4.0,02730,03050,00080,02120,0228
5.0,01560,01820,00070,01690,0183
6.0,00720,00900,00080,01360,0152
7.0,00200,00300,00120,01120,0136

На основании полученных опытных и расчётных данных построим график зависимости момента инерции твёрдого тела I от квадрата расстояния l2, от оси вращения до центра масс. Проведём через экспериментальные точки и доверительные интервалы прямую линию, экспериментальной зависимости I=f(l2).

Используя полученные данные, построим линеаризованный график этой зависимости в координатах I, l2, с учетом доверительных интервалов:

Рассчитаем коэффициенты a и b линеаризованного графика

методом наименьших квадратов:

Таблица №3

NXyxyx^2Y^2
10,08410,04170,0035070,007070,00174
20,06250,03400,0021250,003910,00116
30,04410,02740,0012080,001940,00075
40,02890,02200,0006360,000840,00048
50,01690,01760,00030,000290,00031
60,00810,01440,0001160,000070,00021
70,00250,01243,1E-050,000010,00015
0,24710,16950,0079230,014120,0048

a = (nS3 - S1S2)/S5,

b = (S2S4 - S1S3)/S5, где:

S1 = ; S1 =0.2471

S2 = ; S2 = 0,1695

S3 = ; S3 = 0,007923;

S4 = ; S4 = 0,01412;

S5; S5 = 0.037757;

S6 = ; S6 =0,0048;

a = (nS3 - S1S2)/S5 = 0.3596;

b = (S2S4 - S1S3)/S5 = 0.0115;

Используя график линеаризованной зависимости I=f(l2), изображённой на рис.4.1 определим собственный момент инерции I0 относительно оси проходящей через его центр масс, что составило:

I0=0,0115 кг×м2 .

Произведём расчёт момента инерции прямого тонкого стержня длиной d относительно оси перпендикулярной стержню и проходящей через его середину по формуле (3.11):

I0=(1/12)*0,358*0,3844= 0,0115 кг×м2 .

Экспериментальное значение массы стержня определяем по коэффициенту наклона прямой, m=(0,0340 кг×м2 – 0,0144 кг×м2)/(0,0625 м2 – 0,0081м2)=0,0196 кг×м2/0,0544 м2=0,360 кг.

Анализ графика на рис.4.1. показывает, что через экспериментальные точки и доверительные интервалы можно провести прямую линию. Следовательно, зависимость I=f(l2) является линейной, значит, зависимость момента инерции твёрдого тела от квадрата расстояния от оси вращения до центра масс подтверждена экспериментально.

Найденное значение момента инерции I0 прямого тонкого стержня длиной d на графике и рассчитанное по формуле (3.11) совпадают.

I,Кг×м2

Рис. 4.1
l2,м2

5. ВЫВОДЫ

В результате проделанной лабораторной работы мы определили момент инерции I0 физического маятника относительно оси, проходящей через центр масс, и момент инерции относительно оси, не проходящий через центр его масс и проверили справедливость теоремы Штейнера на примере физического маятника.

6. Контрольные вопросы.

6.1 Как формулируется понятия инерции материальной точки и твёрдого тела?

Внутреннее свойство тел сохранять состояние своего движения в отсутствии сил и реагировать на их действия изменением состояния движения, сопротивляясь этим изменениям, называют, в общем случае, инерционностью.

Количественной мерой воздействия на тело в каждый момент времени, изменяющего состояние его поступательного движения, является сила F. Равенство силы нулю означает неизменность состояния тела – движения или покоя. Протяженное во времени воздействие оценивается как произведение силы на время её действия F∆t, называют эту меру действия импульсом силы.

Импульс силы и сила – причинные динамические характеристики по отношению к объекту их приложения. Импульс переменной во времени силы, приходящийся на бесконечно малый интервал времени dt, есть дифференциал импульса силы Fdt. Равенство нулю дифференциала предполагает постоянство импульса тела: при неизменной массе тела вектор скорости его поступательного движения и сонаправленный с ним вектор импульса будут оставаться неизменными по величине и направлению (F= 0, mv = const).

История формирования понятий динамики твёрдого тела такова, что между характеристиками поступательного движения материальной точки и вращательного движения твёрдого тела имеет место определённая аналогия, вытекающая из общности материалистических представлений о причинах и следствиях. Так, центральное понятие динамики материальной точки действие (воздействие, взаимодействие), описываемое силой F и импульсом силы F∆t, в динамике твёрдого тела дополнилось характеристиками: моментом силы M – мерой мгновенного (текущего) действия – и импульсом момента силы M∆t – мерой протяжённого во времени действия. Момент силы, или вращательный момент, определяется как векторное произведение действующей на тело силы и радиус-вектора точки приложения этой силы относительно какой-либо выбранной (выделенной) точки: M = r * F, M = r*F*sin(r, F).

Действуя на тело продолжительное время, вращательный момент обуславливает изменение состояния движения тела. По аналогии с теорией движения материальной точки, в которой импульс силы, как причинный фактор, обуславливает следствие – приращения импульса тела, равное импульсу силы, - в динамике твёрдого тела импульс момента силы вызывает изменение момента импульса тела L (M*dt = dL).

6.2 В каких ситуациях применима теорема Штейнера?

Если известен момент инерции тела относительно любой оси, проходящей через центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера. Суть, которой состоит в применении формулы:

I = I0 + ml2,

где l – расстояние между осью симметрии тела и осью вращения,

m – масса тела,

I0 – момент инерции тела относительно оси симметрии.

6.3Как формулируется теорема Штейнера?

Момент инерции I относительно произвольной оси равен сумме момента инерции I0 относительно оси, параллельной данной и проходящей через центр масс тела и произведения массы тела m на квадрат расстояния l между осями:

I = I0 +ml2.

6.4 Под действием какой силы совершается колебательное движение маятника?

Колебательные движения физического маятника совершаются под действием силы тяжести около неподвижной горизонтальной оси, не проходящей через его центр тяжести. Силу тяжести P = mg можно разложить на две составляющие, одна из которых P2 уравновешивается реакцией подвеса. Под действием другой P1 маятник приходит в движение. На основании второго закона Ньютона для динамики вращательного движения запишем:

M = I ε = -P1l,

где M – момент вращающей силы;

ε – угловое ускорение.

Модуль составляющей силы P1 = P sinφ. Знак «минус» выбран потому, что действующая сила направлена в сторону, противоположную положительному направлению отклонения маятника.

6.5 Является ли момент инерции аддитивной величиной?

Момент импульса твёрдого тела складывается из моментов импульса составляющих его материальных точек, т.е. момент импульса – аддитивная величина. Момент импульса материальной точки относительно произвольной точки пространства называют векторное произведение радиус-вектора материальной точки в системе отсчёта выбранной точки:

Li = [ri * pi] = mi [ri * vi].

6.6 Объяснить метод определения момента инерции с помощью физического маятника.

В основе определения момента инерции тел с помощью физического маятника лежит экспериментальная проверка справедливости теоремы Штейнера. Зная ускорение свободного падения g, массу m, экспериментально измерив длину l и определив период T можно вычислить момент инерции маятника. Зависимость I=f(l), как следует из выражения I = I0 +ml2нелинейная и график зависимости представляет собой возрастающую кривую, по виду которой нельзя утверждать о проверяемой зависимости.

Единственным графиком по виду, которого можно однозначно судить о характере исследуемой зависимости, является прямая линия, поэтому используем метод линеаризации. В данном случае такими переменными являются I и l2, следовательно, для проверки построим график I=f(l2), при этом на него нанесём экспериментальные точки и доверительные интервалы. Через экспериментальные точки и доверительные интервалы (рис. 4.1) проводим прямую линию, т.е. экспериментальная зависимость [I=f(l2)] момента инерции твёрдого тела от квадрата расстояния от оси вращения до центра масс является линейной, значит, правильность соотношения I = I0 +ml2 подтверждена экспериментально.

Используя график линеаризованной зависимости I=f(l2) можно вычислить массу стержня и собственный момент инерции, а также сравнить результаты расчёта и опыта.

Для этого сравним наше уравнение с уравнением прямой

I = I0 +ml2

y = b = ax,

где а – угловой коэффициент,

b – отрезок, отсекаемый прямой на оси y.

Угловой коэффициент определяется как

а =y/∆x,

где x – приращение аргумента,

y – соответствующее приращение функции.

В нашем случае а = m = ∆I/∆(l2), b = I0.

6.7 Какой маятник называется физическим?

Физическим маятником называется любое твёрдое тело, которое под действием силы тяжести совершает колебания около неподвижной горизонтальной оси, не проходящей через центр масс.

Период Т малых колебаний физического маятника равен:

T = 2π (I/(mgl))1/2,

где I – момент инерции маятника относительно оси О,

m – масса маятника,

l – расстояние от точки A до оси О.

6.8 При каких формальных допущениях справедлива формула периода колебаний маятника (3.7)?

Собственные механические колебания возникают в физическом маятнике под действием силы тяжести вокруг неподвижной оси. Эти колебания в первом приближении не подвержены воздействию внешних сил. Модуль составляющей силы тяжести твёрдого тела определяется как P1 = P*sin φ. При малых углах отклонения sinφ ≈ φ, а период колебаний не зависит от амплитуды колебаний. Поэтому формула периода колебания маятникаT = 2π (I/(mgl))1/2 справедлива в случаях, когда угол отклонения маятника в положении равновесия мал и не должен превышать 5-10°.

6.9 Как записывается основной закон динамики вращательного движения?

Основное уравнение (закон) динамики вращательного движения: при воздействии момента внешних сил твёрдое тело вращается вокруг неподвижной оси с угловым ускорением, прямо пропорциональным моменту сил и обратно пропорциональным моменту инерции тела относительно данной оси:

M = Iß,

где М – результирующий момент внешних сил, действующих на тело,

ß – угловое ускорение,

I – момент инерции тела относительно оси вращения.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно