Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Электронные цепи СВЧ (конспект) Add1

Тип Реферат
Предмет Физика
Просмотров
1001
Размер файла
101 б
Поделиться

Ознакомительный фрагмент работы:

Электронные цепи СВЧ (конспект) Add1

Параметры матрицы рассеяния могут быть рассчитаны по известной матрице проводимости четырехполюсника по формуле:

,

где – единичная матрица.

Необходимо отметить важную особенность параметров матрицы рассеяния, связанную с направлением прохождения сигнала. При изменении направления передачи изменятся лишь индексы в параметрах рассеяния ( на , на ), знаки же величин, входящих в уравнения (3.1) останутся прежними.

Установим связь между параметрами волновой теории (S-матрицей) и параметрами классической теории (Y-матрицей). Для этого рассмотрим четырехполюсники с направлениями падающих и отраженных волн, а также токов и напряжений, как показано на рисунках, и, соответствующие данным системам параметров, уравнения:

Рис. 3.2 Четырехполюсники в системе волновой и классической теорий

Учитывая введенные ранее обозначения для падающих и отраженных волн

,

а также выразив из этих уравнений токи и напряжения, подставим их в уравнения для S-параметров:

.

(минус, так как ток направлен из четырехполюсника).

Рис. 3.3 К расчету S-матрицы по матрице Y

Подставляя в уравнения для параметров, получим:

.

Приведем к общему знаменателю:

.

Перегруппируем слагаемые

.

и выразим из полученных уравнений падающие и отраженные волны:

.

Далее учтем нормировку матрицы проводимости: .

.

Первое уравнение получим в виде:

.

Преобразуем второе уравнение:

.

Получим:

Матрица коэффициентов полученной системы запишется:

.

Волновая матрица передачи. Если в качестве зависимых переменных выбрать волны на входе четырехполюсника – волну падающую на вход и волну отраженную от входа, а в качестве независимых переменных – волны на выходе - распространяющуюся к нагрузке и отраженную от нагрузки, то система уравнений, коэффициентами в которой будут параметры волновой матрицы передачи, запишется:

. (3.2)

Описание четырехполюсников в виде волновой матрицы передачи удобно при их каскадном соединении. Результирующая матрица передачи в этом случае определится по соотношению:

.

Где k-количество каскадно соединенных четырехполюсников.

Можно показать, что для взаимных четырехполюсников справедливо соотношение , а для симметричных: .

Связь между волновой матрицей и матрицей классической теории Y устанавливают соотношения:

.

3.3. Расчет схемных функций по матрице передачи

Рассчитаем входной и выходной импедансы четырехполюсника, а также коэффициент передачи напряжения при произвольных нагрузках на входе и на выходе по А-матрице (или ABCD-матрице, как принято обозначать в зарубежных источниках) в соответствии с принятыми на рисунке обозначениями.

. (3.3)

Определим сопротивления нагрузки и генератора:

; . (3.4)

Входное сопротивление определится в результате деления первого уравнения исходной системы на второе:

.

Физический смысл параметров А-матрицы передачи:

- обратный коэффициент передачи напряжения;

- сопротивление передачи;

- проводимость передачи;

- обратный коэффициент передачи тока.

Коэффициент передачи по напряжению от источника к нагрузке найдем, подставляя входное напряжение из (3.4), а затем входной ток из второго уравнения - в первое уравнение системы (3.3):

.

Для вывода выражения для схемной функции рассмотрим четырехполюсник с независимым источником напряжения на выходе:

Поставив в систему уравнений (3.3) входной и выходной токи с учетом знаков, получим:

, выражая

из первого уравнения и подставляя во второе – получим:

.

Коэффициент отражения от входа:

.

Коэффициент отражения от выхода:

.

3.4. Связь между системами волновых параметров

1. Связь между волновыми матрицами устанавливается соотношениями:

,

где .

Матрицы существуют, если .

2. Связь между матрицами волновой и классической теорий:

;

;

.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 368 оценок star star star star star
среднее 4.9 из 5
ДВГУПС
очень ответственно подошел к работе! Надеюсь на дальнейшее сотрудничество
star star star star star
Технический нефтегазовый институт
Спасибо Оксане, очень быстрое и качественное исполнение работы. Защита прошла на отлично. ...
star star star star star
ГУЗ
Спасибо Большое! Реферат был написан в короткие сроки и очень доступным языком
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Исследуйте на сходимость числовой знакоположительный ряд

Решение задач, Математика

Срок сдачи к 20 янв.

только что

4 задания

Контрольная, Статистика

Срок сдачи к 18 янв.

только что

Выполнить курсовой. Финансы организаций. Р-00271

Курсовая, Экономика

Срок сдачи к 22 янв.

только что

Английский

Решение задач, Английский

Срок сдачи к 15 янв.

1 минуту назад

В данный момент требуется узнать стоимость

Курсовая, Бухгалтерский учет

Срок сдачи к 1 апр.

1 минуту назад

Решить 2 задачи и ответить на вопросы.

Решение задач, Электротехника

Срок сдачи к 17 янв.

2 минуты назад

Выполнить курсовой. Финансы организаций. Р-00271

Курсовая, Финансы

Срок сдачи к 22 янв.

2 минуты назад

8 заданий под вариантами 7,17,27,37,47,57,67,77

Контрольная, Математика

Срок сдачи к 14 янв.

2 минуты назад

Тема в задании нужно сделать курсовую по организации пар Севастополь...

Курсовая, Бухгалтерская и налоговая отчетность

Срок сдачи к 15 янв.

2 минуты назад

Выполнить Индивидуальный проект, Обществознание

Контрольная, Обществознание

Срок сдачи к 18 янв.

4 минуты назад

Сделать 3 призентации

Презентация, SMM в спорте

Срок сдачи к 18 янв.

4 минуты назад

сравнительный анализ мер валютного контроля

Презентация, Таможенное дело

Срок сдачи к 15 янв.

4 минуты назад

Тесты,Экзамены

Другое, Все

Срок сдачи к 19 янв.

5 минут назад

Решить контрольную

Контрольная, Биология

Срок сдачи к 30 янв.

5 минут назад

Технологическая (проектно-технологическая) практика

Отчет по практике, Педагогическое образование

Срок сдачи к 16 февр.

6 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно