Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Расчет жесткого стержня

Тип Реферат
Предмет Коммуникации и связь
Просмотров
1143
Размер файла
186 б
Поделиться

Ознакомительный фрагмент работы:

Расчет жесткого стержня

Содержание

1. Задание

2. Схема нагруженного стержня

3. Исходные данные

4. Построение системы линейных алгебраических

5. Вывод формул проверки, достоверности вычисления опорных реакций

6. Вывод рабочих формул определение внутренних усилий стержня

7. Численный метод решения СЛАУ - метод Гаусса

8. Обоснование применения метода Гаусса

9. Блок - схема алгоритма

10. Программа

12. Анализ результатов

Литература

1. Задание

Построить математическую модель расчета опорных реакций жесткого стержня с тремя опорными узлами и определение внутренних усилий, поперечной силы Q и изгибающего момента М, возникающих во внутренних сечениях стержня под действием нагрузки. Разработать алгоритм и составить программу вычисления опорных реакций и распределения вдоль оси стержня внутренних усилий.

Вариант - 82-4г. Схема - 2.

Численный метод решения СЛАУ - метод Гаусса.

2. Схема нагруженного стержня

P1, P2-сосредоточенная сила, Н

q4 - интенсивность распределенной нагрузки, H/м

C1, C2 - отрезок балки, м

L1, L2 - пролет балки, м

М1, M2 - круговой момент, Hм

3. Исходные данные

P1=15kH P2=30kHL1=6м L2=12м

M1=10kHм M2=35kHм С1=3м C2=2м

L1=6м L2=12м q4=10kH

Y

4. Построение системы линейных алгебраических

уравнений для определения опорных реакций.

Преобразуем исходную систему:

отбросим опорные стержни и заменим их опорными

реакциями (R1; R2; R3)

интенсивность распределённой нагрузки заменим эквивалентной

силой (F4 = q4c2)

зададим систему координат.

X

Для вывода формул вычисления опорных реакций запишем уравнение равновесия стержня: сумма моментов относительно опорной точки стержня равна нулю.

:

Представил уравнения равновесия балки в форме системы линейных алгебраических уравнений (СЛАУ).

Матричная форма записи СЛАУ вычисление опорных реакций балки

AR=B

А - матрица коэффициентов при неизвестных

R- матрица неизвестных

В - матрица свободных членов

5. Вывод формул проверки, достоверности вычисления опорных реакций

Для проверки правильности вычисления опорных реакций использовал уравнения равновесия балки, сумма проекций всех сил действующих на балку равна нулю.

Y=R1-P1+R2=0

X=R3-P2-F4=0

6. Вывод рабочих формул определение внутренних усилий стержня

На рассматриваемом стержне выделим четыре участка длиной S (длина отрезка от начала до точки сечения стержня), для которых составим формулы для вычисления внутренних усилий: поперечной силы Q и изгибающего момента М.

s - отрезок от начала до точки сечения балки

I cечение

II cечение

III cечение

IV cечение

В точках границ , ,организуем вычисления поперечной силы Q слева (и QQ справа), изгибающего момента М слева (и MМ справа) от рассматриваемых точек.

1 точка границ:

2 точка границ:

3 точка границ:

7. Численный метод решения СЛАУ - метод Гаусса

Численный метод Гаусса относится к точным методам решения системы линейных алгебраических уравнений. Он основан на приведении матрицы коэффициентов к треугольному виду. Процесс поиска решения системы линейных алгебраических уравнений выполняется в два хода: прямой ход и обратный ход.

Прямой ход исключения переменных выполняется путём преобразования коэффициентов СЛАУ, коэффициенты при неизвестных обращаются в нуль, начиная со второго по формулам:

; ; , где

; ;

Процесс преобразования уравнений заканчивается последним уравнением. Результатом прямого хода является получение матрицы коэффициентов к треугольному виду.

Обратный ход (последовательное нахождение неизвестных

) выполняется по формулам:

; ; ; , где

;

В результате формируется матрица неизвестных: Метод Гаусса для решения СЛАУ применим при условии, что все диагональные элементы матрицы отличны от нуля, т.е. , где .

8. Обоснование применения метода Гаусса

Исходная СЛАУ имеет на главной диагонали элементы равные нулю:

следовательно, метод Гаусса применять нельзя.

Для того чтобы использовать численный метод Гаусса для решения данной СЛАУ необходимо её преобразовать. Для этого необходимо применить к исходной СЛАУ схему выбора главных элементов. В исходной СЛАУ переставим уравнения местами: первое уравнение поставим на второе место, второе уравнение поставим на третье место, третье уравнение поставим на первое место.

В результате на главной диагонали матрицы А отсутствуют члены равные нулю.

Для повышения точности получаемого решения СЛАУ матрица А должна быть диагонально преобладающей:

,

Преобразованная СЛАУ имеет вид:

Условия применения метода Гаусса выполняются, следовательно, метод Гаусса можно использовать для решения преобразованной СЛАУ.

9. Блок - схема алгоритма

10. Программа

CLS

SCREEN 12

WINDOW (20, 20) - (-20, - 20)

N = 3

PRINT "Программу составил студент гр.320851 Клычников А.В."

50 PRINT " Расчет жесткого стержня "

PRINT " Исходные данные"

INPUT "Интенсивность распределения нагрузки q4 (кH/м) ="; q4

INPUT "Отрезок балки С1 (м) ="; C1

INPUT "Пролет балки L1 (м) ="; L1

INPUT "Отрезок балки C2 (м) ="; c2

INPUT "Пролет балки L2 (м) ="; L2

INPUT "Круговой момент M1 (кH*м) ="; M1

INPUT "Круговой момент M2 (кH*м) ="; M2

INPUT "Сосредоточенная сила P1 (кH) ="; P1

INPUT "Сосредоточенная сила P2 (кH) ="; P2

PRINT " "

IF C1 > 0 THEN GOTO 10 ELSE GOTO 40

10 IF c2 > 0 THEN GOTO 20 ELSE GOTO 40

20 IF L1 > C1 THEN GOTO 30 ELSE GOTO 40

30 IF L2 > c2 THEN GOTO 60 ELSE GOTO 40

40 PRINT "Ошибка ввода": GOTO 50

60 F = q4 * c2

DIM A (N, N), R (N), B (N)

A (1,1) = - (L1 - C1): A (1,2) = 0: A (1,3) = 0

A (2,1) = 0: A (2,2) = L1 - C1: A (2,3) = L2

A (3,1) = - (L1 - C1): A (3,2) = 0: A (3,3) = L2

B (1) = P1 * (L1 - C1) - M1 - F * (C1/2) - M2 - P2 * c2

B (2) = F * (L2 - c2/2) - M1 + P2 * (L2 - c2) - M2

B (3) = - P1 * (L1 - C1) - M1 + F * (L2 - c2/2) - M2 + P2 * (L2 - c2)

FOR I = 1 TO N - 1

FOR J = I + 1 TO N

A (J, I) = - A (J, I) / A (I, I)

FOR K = I + 1 TO N

A (J, K) = A (J, K) + A (J, I) * A (I, K): NEXT K

B (J) = B (J) + A (J, I) * B (I): NEXT J

NEXT I

R (N) = B (N) / A (N, N)

FOR I = N - 1 TO 1 STEP - 1: H = B (I)

FOR J = I + 1 TO N: H = H - R (J) * A (I, J): NEXT J

R (I) = H / A (I, I)

NEXT I

R1 = R (1): R2 = R (2): R3 = R (3)

X = R1 - P1 + R2

Y = R3 - P2 - F

PRINT " Результаты "

PRINT "Опорная реакция в точке 1 R1="; R (1); "kН"

PRINT "Опорная реакция в точке 2 R2="; R (2); "kН"

PRINT "Опорная реакция в точке 3 R3="; R (3); "kН"

PRINT "Y="; Y; " X="; X

PRINT

PRINT " Таблица ординат эпюр Q и M "

PRINT " S Q M QQ MM"

FOR s = 0 TO L1 + L2

IF s >= 0 AND s < C1 THEN

Q = 0

M = 0

GOTO 70

END IF

IF s > C1 AND s < L1 THEN

Q = R1 - P1

M = P1 * (s - C1) - R1 * (s - C1) + M1

GOTO 70

END IF

IF s > L1 AND s < L1 + L2 - c2 THEN

Q = 0

M = P1 * (L1 - C1) - R1 * (L1 - C1) + M1

GOTO 70

END IF

IF s > L1 + L2 - c2 AND s <= L1 + L2 THEN

Q = - P2 - q4 * (s - L1 - L2 + c2)

M = P1 * (L1 - C1) - R1 * (L1 - C1) + M1 + M2 + P2 * (s - L1 - L2 + c2) + q4 * (s - L1 - L2 + c2) * (s - L1 - L2 + c2) / 2

GOTO 70

END IF

IF s = C1 THEN

Q = R1 - P1

M = M1

QQ = R2 - P1 + R1

MM = - M1 - R2 * (L1 - s) + P2 * (L2 - c2) - M2 - R3 * L2 + F * (L2 - c2/2)

GOTO 80

END IF

IF s = L1 THEN

Q = R1 - P1 + R2

M = P1 * (s - C1) - R1 * (s - C1) + M1

QQ = R2

MM = P2 * (L2 - c2) - M2 - R3 * L2 + F * (L2 - c2/2)

GOTO 80

END IF

IF s = L1 + L2 - c2 THEN

Q = - P2

M = M2 + P1 * (L1 - C1) - R1 * (L1 - C1) + M1 + F * (L1 - C1) / 2 - 30

QQ = R3 - P2 - F

MM = - M2 - R3 * c2 + F

GOTO 80

END IF

70 PRINT USING "##. ## ####. #### ####. ####"; s; Q; M: GOTO 90

80 PRINT USING "##. ## ####. #### ####. #### ####. #### ####. ####"; s; Q; M; QQ; MM

90 NEXT s

A$ = INPUT$ (1)

LINE (10,8) - (18,8), 8

LINE (10,3) - (10, 20), 8

FOR Z = 10 TO 18 STEP.5

LINE (Z, 7.9) - (Z, 8.1), 8

FOR W = 3 TO 20 STEP.5

LINE (9.9, W) - (10.1, W), 8

NEXT W

NEXT Z

LINE (10, - 3) - (18, - 3), 8

LINE (10, 0) - (10, - 18), 8

FOR Z = 10 TO 18 STEP.5

LINE (Z, - 2.9) - (Z, - 3.1), 8

FOR W = - 18 TO 0 STEP.5

LINE (9.9, W) - (10.1, W), 8

NEXT W

NEXT ZFOR T = 0 TO L1 + L2 STEP.001

IF T >= 0 AND T < C1 THEN

Q = 0

M = 0

V1 = Q

U1 = M

GOTO 100

END IF

IF T > C1 AND T < L1 THEN

Q = R1 - P1

M = P1 * (T - C1) - R1 * (T - C1) + M1

V2 = Q

U2 = M

GOTO 100

END IF

IF T > L1 AND T < L1 + L2 - c2 THEN

Q = 0

M = P1 * (L1 - C1) - R1 * (L1 - C1) + M1

V3 = Q

U3 = M

GOTO 100

END IF

IF T > L1 + L2 - c2 AND T <= L1 + L2 THEN

Q = - P2 - q4 * (T - L1 - L2 + c2)

M = P1 * (L1 - C1) - R1 * (L1 - C1) + M1 + M2 + P2 * (T - L1 - L2 + c2) + q4* * (T - L1 - L2 + c2) * (T - L1 - L2 + c2) / 2

GOTO 100

END IF

100 PSET (T / 3 + 10, Q / 3 + 8), 4

PSET (T / 3 + 10, M / 3 - 3), 5

NEXT T

T = C1: GOTO 110

110 Q = R1 - P1

M = M1

PSET (T / 3 + 10, Q / 3 + 8), 4

PSET (T / 3 + 10, M / 3 - 3), 5

LINE (T / 3 + 10, V1/3 + 8) - (T / 3 + 10, Q / 3 + 8), 4

LINE (T / 3 + 10, U1/3 - 3) - (T / 3 + 10, M / 3 - 3), 5

T = L1: GOTO 120

120 Q = R1 - P1 + R2

M = P1 * (T - C1) - R1 * (T - C1) + M1

PSET (T / 3 + 10, Q / 3 + 8), 4

PSET (T / 3 + 10, M / 3 - 3), 5

LINE (T / 3 + 10, V2/3 + 8) - (T / 3 + 10, Q / 3 + 8), 4

LINE (T / 3 + 10, U2/3 - 3) - (T / 3 + 10, M / 3 - 3), 5

T = L1 + L2 - c2: GOTO 130

130 Q = - P2

M = M2 + P1 * (L1 - C1) - R1 * (L1 - C1) + M1 + F * (L1 - C1) / 2

PSET (T / 3 + 10, Q / 3 + 8), 4

PSET (T / 3 + 10, M / 3 - 3), 5

LINE (T / 3 + 10, V3/3 + 8) - (T / 3 + 10, Q / 3 + 8), 4

LINE (T / 3 + 10, U3/3 - 3) - (T / 3 + 10, M / 3 - 3), 5

END

11. Форма ввода - вывода информации

Программу составил студент гр.320851 Клычников А.В."

Расчет жесткого стержня

Исходные данные

Интенсивность распределения нагрузки q4 (кH/м) = 10

Отрезок балки c1 (м) = 3

Пролет балки L1 (м) = 6

Отрезок балки c2 (м) = 2

Пролет балки L2 (м) = 12

Круговой момент M1 (кH*м) = 10

Круговой момент M2 (кH*м) = 35

Сосредоточенная сила P1 (кH) = 15

Сосредоточенная сила P2 (кH) = 30

Результаты

Опорная реакция в точке 1 R1=56.6668kН

Опорная реакция в точке 2 R2=-41.6667kН

Опорная реакция в точке 3 R3=50kН

Y=0 X=

PRINT " Таблица ординат эпюр Q и M "

xQM QQMM

0.0000 0.0000 0.0000

1.0000 0.0000 0.0000

2.0000 0.0000 0.0000

3.0000 41.6667 10.0000 0.0000 0.0000

4.0000 41.6667 -31.6667

5.0000 41.6667 -73.3334

6.0000 0.0000 -115.0000 -41.6667 -115.0000

7.0000 0.0000 -115.0000

8.0000 0.0000 -115.0000

9.0000 0.0000 -115.0000

10.0000 0.0000 -115.0000

12.0000 0.0000 -115.0000

13.0000 0.0000 -115.0000

14.0000 0.0000 -115.0000

15.0000 0.0000 -115.0000

16.0000 -30.0000 -80.0000 0.0000 -115.0000

17.0000 -40.0000 -45.0000

18.0000 -50.000 0.0000

Проверка по оси X =0

Программу составил студент Лазарев В.А. гр.320851

12. Анализ результатов

Эпюры поперечной силы Q и изгибающего момента М.

Q (kH) M (kHм)


Анализ результатов показал, что наиболее напряженное сечение стержня находится в точке с координатой S=14м, Q=-40 kH, M=-80kHм.

Литература

1. Данилина Н.И. Численные методы. - М.: Выш. шк. 1976г. - 368 с.

2. Дъяков В.П. Справочник по алгоритмам и программам на языке Бейсик для ПЭВМ. - М.: Наука, 1987г. - 240с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно