Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Дискретизация обычных и двумерных сигналов

Тип Реферат
Предмет Коммуникации и связь
Просмотров
716
Размер файла
181 б
Поделиться

Ознакомительный фрагмент работы:

Дискретизация обычных и двумерных сигналов

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

кафедра РЭС

реферат на тему:

"Дискретизация обычных и двумерных сигналов"

МИНСК, 2009

Дискретизация

Исключительно важным положением теории связи, на котором основана вся современная радиотехника, является так называемая теорема отсчетов, или теорема Котельникова. Эта теорема позволяет установить соотношение между непрерывными сигналами, какими являются большинство реальных информационных сигналов – речь, музыка, электрические сигналы, соответствующие телевизионным изображениям, сигналы в цепях различных радиотехнических систем и т.п., и значениями этих сигналов лишь в отдельные моменты времени – так называемыми отсчетами. На использовании этой связи строится вся современная цифровая радиотехника – цифровые методы передачи и хранения звуковых и телевизионных сигналов, цифровые системы телефонной и сотовой связи, системы цифрового спутникового телевидения и т.д. Можно сказать больше: будущее всей техники обработки сигналов - в ее цифровой реализации. Пройдет еще 10 – 20 лет - и мы будем вспоминать о традиционных аналоговых методах формирования и приема сигналов, их обработки и хранения лишь в теоретическом плане. Вся практическая радиотехника, связанная с обработкой информационных сигналов, перейдет на цифровую реализацию.

Теорема дискретизации, или, как ее еще называют, теорема Котельникова, теорема Уитекера, формулируется следующим образом: непрерывная функция Х(t) с ограниченным спектром, то есть не имеющая в своем спектре

(1)

составляющих с частотами, лежащими за пределами полосы f Î (-Fm, Fm), полностью определяется последовательностью своих отсчетов в дискретные моменты времени X(ti), следующих с шагом Dt < 1/Fm.

Доказательство сформулированной теоремы основывается на однозначном соответствии между сигналами и соответствующими им спектрами. Иными словами, если сигналы одинаковы, то и соответствующие им спектры также одинаковы. И, наоборот, если спектры двух сигналов одинаковы, то и соответствующие сигналы также одинаковы.

Приведем простейшее доказательство теоремы Котельникова, для чего сначала покажем, каким образом спектр дискретной последовательности отсчетов { Х(ti) } связан со спектром непрерывной функции Х(t).

Последовательность отсчетов непрерывной функции Х(t) можно представить в виде произведения Х(t) на периодическую последовательность d-импульсов (решетчатую функцию) с периодом t:

(2)

Тогда спектр (преобразование Фурье) дискретизованной функции Х(ti) можно записать в следующем виде:

(3)

или, с учетом "фильтрующего" свойства d-функции, выражение (3) приобретет свою окончательную форму:

(4)

Нетрудно заметить, что спектр периодически дискрeтизованной функции Х(it) также становится периодическим, с периодом 1/t.

Действительно,

(5)

Такой же результат, но несколько иным способом можно получить, если вспомнить, что произведению функций во временной области соответствует свертка их спектров, и тогда

(6)

Спектр "решетчатой функции" также имеет вид периодической последовательности d-импульсов, но уже по частоте и с периодом f = 1/t, то есть

(7)

Произведя свертку и с учетом "фильтрующего свойства" d-функции получим

(8)

Таким образом, спектр дискрeтизованной функции Х(i Dt) получается путем периодического, с периодом 1/t, повторения спектра исходной функции Х(t).

Из последнего выражения видно также, что для k = 0

(9)

иными словами, составляющая спектра дискрeтизованной функции для k = = 0 с точностью до постоянного множителя 1/t совпадает со спектром исходной непрерывной функции Х(t). Следовательно, если каким-либо образом можно выделить из полного (периодического) спектра последовательности Х(ti) лишь составляющую с k = 0, то тем самым по дискретной последовательности Х(ti) восстановится непрерывная функция Х(t).

Из выражения (9) следует, что устройством, позволяющим выделить из спектра дискретизованного сигнала Х(ti) составляющую, полностью совпадающую со спектром исходного сигнала Х(t), является идеальный фильтр нижних частот (ФНЧ) с частотной характеристикой вида

(10)

При этом спектры, соответствующие различным значениям k, могут быть разделены только при условии их неперекрываемости. Неперекрываемость же спектров обеспечивается при выполнении условия

Fm ≥ 1/ Δt - Fmили Δt ≤ 1/ 2Fm, (11)

откуда и вытекает значение интервала дискретизации Δt, обеспечивающего восстановление исходного сигнала Х(t) по последовательности его отсчетов.

Импульсная переходная характеристика фильтра, восстанавливающего непрерывный сигнал по дискретной последовательности его отсчетов, может быть получена как преобразование Фурье от частотной характеристики (11) и имеет вид

h(t) = F-1 {H(f) } = sinc (2pFmt). (12)

Пропуская дискретную последовательность Х(ti) через фильтр с импульсной характеристикой h(t), получим исходный непрерывный сигнал:

(13)

Процесс дискретизации непрерывной функции X(t) и ее восстановления по дискретной последовательности отсчетов X(ti) иллюстрируется рис.1:


Рис. 1.


Таким образом, по дискретной последовательности отсчетов функции Х(i Dt) всегда можно восстановить исходную непрерывную функцию Х(t), если отсчеты брались с интервалом Dt £ 1/2Fm. Это говорит о том, что не существует принципиальных различий между непрерывными и дискретными сигналами. Любой непрерывный сигнал с ограниченным спектром (а все реальные сигналы имеют ограниченный спектр) может быть преобразован в дискретную последовательность, а затем с абсолютной точностью восстановлен по последовательности своих дискретных значений. Последнее позволяет также рассматривать источники непрерывных сообщений как источники дискретных последовательностей, переходить, где это необходимо и удобно, к анализу дискретных сообщений, осуществлять передачу непрерывных сообщений в дискретной форме и так далее.

Практические вопросы дискретизации реальных сигналов

Сообщения, передаваемые по каналам связи (речь, музыка, телевизионный сигнал, телеметрические данные и т.д.), на практике являются функциями с ограниченным спектром. Например, верхняя частота спектра Fm примерно равна: для речи - 3,5 кГц, для музыки - 10 - 12 кГц (удовлетворительное воспроизведение), для телевизионных сигналов - 6 МГц.

Некоторая некорректность состоит в том, что теорема отсчетов доказана для функций Х(t), заданных на неограниченном интервале t Î (-¥, ¥). Соответственно отсчеты { Х(i Dt),i = 0, ±1, ±2,. . } представляют собой бесконечную последовательность. Однако в реальных условиях сообщения Х(t) имеют начало и конец, а следовательно, конечную длительность T< ¥. Условия финитности спектра и конечной длительности сообщения, строго говоря, несовместимы. Спектр функции с конечной длительностью теоретически имеет значения, отличные от нуля, при любых значениях частоты FÎ(-¥, ¥). Тогда при любом выборе шага дискретизации Dt соседние боковые полосы спектра (см. рис.1) перекрываются, и на выходе идеального фильтра нижних частот с частотой среза F = 1/2Dt будет восстановлен сигнал Х*(t), не полностью совпадающий с исходным сигналом Х(t). Во-первых, отсекаются частотные составляющие спектра с |f| >F. Во-вторых, в полосу пропускания фильтра попадают "хвосты" периодического продолжения спектра.

Вместе с тем всегда можно задать шаг дискретизацииDt (или верхнюю частоту спектра Fm=1/2Dt) так, чтобы энергия ЭD, сосредоточенная в отсекаемых "хвостах" спектра (на частотах f >1/2Dt), была пренебрежимо мала по сравнению с энергией всего сигнала Эx. Ошибка восстановления сигнала Х*(t) на выходе фильтра зависит от отношения ЭD /Эx и может быть выбором Dt (или F=1/2Dt) сделана меньше любой заданной величины. Совершенно очевидно, что если искажения сообщений, обусловленные временной дискретизацией, будут значительно меньше искажений, вызванных помехами в канале связи и допустимых техническими условиями для данной системы передачи информации, то такие искажения существенного значения не имеют и могут не учитываться.

Таким образом, приближенно можно принять, что реальные сообщения имеют конечную длительность Tи одновременно их спектры ограничены по частоте величиной Fm. При этом бесконечный ряд Котельникова (13) преобразуется в конечный с числом ненулевых отсчетов n, примерно равным отношению длительности сообщения к интервалу дискретности:

(14)

Основные формулы теоремы отсчетов для сигналов, отличных от нуля на конечном интервале tÎ (0, T), принимают вид:

(15)

(16)

(17)

Наконец, когда сигнал {X(t), tÎ(0, T) } задан конечным числом отсчетов X(0), X(Dt),. ., x(kDt), в формулах (15) - (17) в отличие от соответствующих точных формул следовало бы писать знак приближенного равенства (@). Однако обычно этого не делают.

Еще одним приближением, которое не может быть выполнено в действительности, является предположение об "идеальности" амплитудно-частотной характеристики восстанавливающего фильтра H(f). Дело в том, что фильтр с идеально прямоугольной АЧХ имеет ИПХ бесконечной длительности и не может быть реализован на практике. Фильтры же с конечной ИПХ имеют теоретически бесконечную полосу. Нетрудно показать, что влияние конечной длительности ИПХ восстанавливающего фильтра на сигнал Х*(t) имеет тот же характер, что и ограниченность интервала наблюдения функции Х(t).

Следовательно, для фильтра НЧ с заданной АЧХ всегда можно выбрать шаг дискретизацииDt таким, чтобы энергия ЭD, просачивающаяся через "хвосты" его амплитудно-частотной характеристики (на частотах f >1/2Dt), была пренебрежимо мала по сравнению с энергией всего сигнала Эx. В связи с этим на практике шаг дискретизации реальных сообщений Х(t) делают несколько меньшим, а частоту дискретизации, соответственно, – несколько большей (по крайней мере, на 30 - 50%), нежели предписывает теорема Котельникова.

Дискретизация двумерных сигналов (изображений)

Все большую часть передаваемых с использованием РТС ПИ сообщений, особенно в последнее время, составляют сигналы, являющиеся функциями не только времени - λ(t) (речь, музыка и т.п.), но и ряда других переменных, например, λ(x,y), λ(x,y,t) (статические и динамические изображения, карты физических полей и т.п.). В связи с этим естественным является вопрос: можно ли так, как это делается для временных сигналов (или других функций одной переменной), производить дискретизацию многомерных сигналов (функций нескольких переменных) ?

Ответ на этот вопрос дает теорема дискретизации для двумерных (или в общем случае - для многомерных) сигналов, которая утверждает: функция двух переменных λ(x,y), двумерное преобразование Фурье которой

(18)

равно нулю при fx ≥ fxmax и fy ≥ fymax, однозначно определяется своими значениями в равноотстоящих точках плоскости переменных x и y, если интервал дискретизации удовлетворяет условию Δx ≤ 1/2fxmax, Δy ≤ 1/2fy. Процедура дискретизации двумерной функции иллюстрируется примером, приведенным на рис.2 - 4.

Рис. 2.


Рис. 3.

Рис. 4.

Доказательство двумерной теоремы дискретизации основано, так же как и для одномерного случая, на однозначном соответствии между сигналами и их спектрами: одинаковым изображениям (двумерным функциям) соответствуют одинаковые спектры, и наоборот, если спектры двух функций одинаковы, то и сами эти функции равны друг другу.

Преобразование Фурье (спектр) дискретизованной двумерной функции FF{λ(iDx,jDy) } получается периодическим продолжением спектра исходной непрерывной функции λ (x,y) в точки частотной плоскости (kDfx,lDfy) (рис.5), где fxи fy - так называемые "пространственные частоты", являющиеся аналогами обычной "временной" частоты и отражающие скорость изменения двумерной функции λ (x,y) по соответствующим координатам (крупные фрагменты изображения - низкие частоты, мелкие детали - высокие частоты).



Рис. 5.

Аналитически это можно записать следующим образом:

(18)

Из рис.1.8. видно, что если соблюдается условие неперекрываемости периодических продолжений спектра FF{λ(iDx,jDy) }, а это справедливо при Δx ≤ 1/2fxmax, Δy ≤ 1/2fymax, то с помощью идеального двумерного ФНЧ с частотной характеристикой вида

(19)

из спектра дискретизованной функции FF{λ(iDx,jDy) } можно абсолютно точно выделить спектр исходной непрерывной функции FF{λ(x,y) } и, следовательно, восстановить саму функцию.

Таким образом, видно, что не существует принципиальных отличий в дискретизации между одномерными и двумерными (многомерными) функциями. Результатом дискретизации в обоих случаях является совокупность отсчетов функции, различия могут быть лишь в величине шага дискретизации, числе отсчетов и порядке их следования.

ЛИТЕРАТУРА

1. Лидовский В.И. Теория информации. - М., "Высшая школа", 2002г. – 120с.

2. Метрология и радиоизмерения в телекоммуникационных системах. Учебник для ВУЗов. / В.И. Нефедов, В.И. Халкин, Е.В. Федоров и др. – М.: Высшая школа, 2001 г. – 383с.

3. Цапенко М.П. Измерительные информационные системы. - . – М.: Энергоатом издат, 2005. - 440с.

4. Зюко А.Г., Кловский Д.Д., Назаров М.В., Финк Л.М. Теория передачи сигналов. М: Радио и связь, 2001 г. –368 с.

5. Б. Скляр. Цифровая связь. Теоретические основы и практическое применение. Изд.2-е, испр.: Пер. с англ. – М.: Издательский дом "Вильямс", 2003 г. – 1104 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно