Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Модели полупроводниковых диодов

Тип Реферат
Предмет Коммуникации и связь
Просмотров
892
Размер файла
1 б
Поделиться

Ознакомительный фрагмент работы:

Модели полупроводниковых диодов

Сибирский государственный университет информации и телекоммуникаций

Лабораторная работа

Тема:

Модели полупроводниковых диодов

Новосибирск 2008


Содержание

Часть №1

1. Исследование зависимости времени жизни от концентрации легирующей примеси

2. Исследование свойств диффузионной длины неосновных носителей

3. Исследование модели тока насыщения IS идеального диода в модели Шокли

4. Исследование модели контактной разности потенциалов

5. Исследование модели толщины ОПЗ

Часть №2

1. Исследование влияния процессов генерации-рекомбинации в ОПЗ на вид ВАХ для PSPICE модели диода

2. Исследование влияния температуры и концентрации примесей в База на вид ВАХ для PSPICE модели идеального диода

3. Исследование влияние процессов высокого уровня инжекции на вид ВАХ для PSPICE модели диода

4. Исследование влияние процессов высокого уровня инжекции на вид ВАХ для PSPICE модели диода

Часть №3

1. Исследования влияние концентрации в базе и температуры на значение равновесной барьерной емкости Cj0 (при U=0

2. Исследование ВФХ барьерной емкости в зависимости от ее входных параметров

3. Исследование ВФХ диффузионной емкости в зависимости от ее входных параметров

4. Исследование ВФХ барьерной и диффузионной емкости на совмещенном графике


Лабораторная работа №3

Тема: «МОДЕЛИ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ»

Цель работы: Изучить основные физические модели p-n переходов, находящихся в равновесном состоянии и при электрическом смещении, а так же модели ВАХ диодов, соответствующие различным процессам (генерация-рекомбинация в ОПЗ, высокий уровень инжекции, явление пробоя) в зависимости от учитываемых параметров в схемотехнической модели диода для программы PSPICE в режиме работы на постоянном токе (DC режим).

Исходные данные:

- п/п – Ge

- NЭ = 1×1018 см-3; NБ = 2×1015 см-3.

- LБ = 10мин; LЭ = 2мин; W = 500мин; H = 200мин.

- Sзахв = 2×10-16 см-2.

- Переход p-n.


Часть №1

Uобр = -50В; Т = 300°К

Концентрационные зависимости подвижностей основных и неосновных носителей:

Эмиттер (Р)База (n)
N/5N5NN/5N5N
Конц. см-32×10171×10185×1018Конц. см-34×10142×10151×1016
mосн см2/В×с700380160mосн см2/В×с450041003800
mнеосн см2/В×с270020001200mнеосн см2/В×с200019001500

1. Исследование зависимости времени жизни от концентрации легирующей примеси

Для Ge модель времени жизни носителей описывается формулой Шокли-Рида-Холла:

где Еt – локальный уровень

Еi – уровень Ферми собственного п/п

Nt – концентрация ловушек

s - сечение захвата.

ЭмиттерБаза
Т°,Кtнеосн, секN/5N5NN/5N5N
2×10171×10185×10184×10142×10151×1016
3002,5×10-95×10-101×10-101,37×10-62,55×10-75,02×10-8
4002,52×10-95,01×10-101×10-102,46×10-63,99×10-75,74×10-8
5002,68×10-95,07×10-101×10-102,5×10-64,98×10-79,11×10-8
tнеосн, сек
tнеосн, сек

Т = 300°К; NЭ = 1×1018 см-3; NБ = 2×1015 см-3.

NЭNБ
Getнеосн, сек5×10-102,55×10-7
Si5×10-102,54×10-7

При увеличение сечение захвата на 1% (при фиксированных N и Т=300°К) время жизни неосновных носителей в базе уменьшается на 1%.

Время жизни определяется количеством и типом рекомбинации ловушек. Оно max в собственном п/п. С увеличением Т затрудняется захват носителей на уровни, поэтому их время жизни растет.

В реальных п/п время жизни неравновесных носителей заряда может составлять 10-2¸10-10с.

2. Исследование свойств диффузионной длины неосновных носителей

Модель диффузионной длины неосновных носителей определяется выражением:

где D – коэффициент диффузии

t - время жизни носителей.

ЭмиттерБаза
Т°,КN/5N5NN/5N5N
2×10171×10185×10184×10142×10151×1016
300Lнеосн, см4,18×10-41,61×10-45,57×10-58,42×10-33,54×10-31,4×10-3
4003,3×10-41,27×10-44,39×10-58,89×10-33,49×10-31,18×10-3
5002,83×10-41,06×10-43,65×10-57,45×10-33,24×10-31,23×10-3

Если Lнеосн (Б)>L(Б), то диод с короткой базой.

Если Lнеосн (Б)<L(Б), то диод с длиной базой.

В нашем варианте рассматривается диод с короткой базой т.к.

Lнеосн (Б) = 3,54×10-5м, L(Б)=1×10-5м, Lнеосн (Б)>L(Б)).

Lнеосн (Э), см
Ge1,609×10-4
Si5,913×10-5

При смене типа материала с Ge на Si диффузионная длинна неосновных носителей в эмиттере уменьшается.

При увеличении сечения захвата на 1% (при фиксированных N и Т=300°К) диффузионная длина неосновных носителей в базе уменьшается на 0,56%.

Чем меньше примесей и дефектов в полупроводнике, тем больше время жизни носителей, и соответственно диффузионная длина этих носителей.

3. Исследование модели тока насыщения ISидеального диода в модели Шокли

Модель тока насыщения идеального диода описывается формулой Шокли:

где S – площадь поперечного сечения перехода

LPи Ln – диффузионная длина электронов и дырок

tPи tP – время жизни электронов и дырок

NDи NA – концентрация ионизированных атомов.

Т°,КN/5N5N
Э,БЭ,БЭ,Б
300IS×10-8 А92,32242,29116,831
3504451,082256,57939,77
40086050,1741042,6318968,06

Если сечение захвата увеличить на 1% (при фиксированных N и T=300°К), то ток насыщения увеличится на 0,5%.

Если площадь поперечного сечения увеличить на 1% (при фиксированных N и T=300°К), то ток насыщения увеличится на 1%

Таким образом, чувствительность тока насыщения к изменению к площади поперечного сечения выше, чем к изменению сечение захвата.

П/п диода выполняет роль выпрямителя, пропуская ток лишь в одном направлении (выпрямитель тем лучше, чем меньше Iобр). При комнатной температуре ток Is составляет несколько мкА для Ge диодов и несколько нА для Si диодов.

4. Исследование модели контактной разности потенциалов

Модель контактной разности потенциалов описывается следующим выражением:

NA и ND – концентрация ионизированных атомов

ni – собственная концентрация.

Т°,КN/5N5N
300φК, В0,31860,40200,4854
3500,2460,3430,441
4000,1720,2830,394

φК, В
Ge0,402
Si0,812

При смене типа материала с Ge на Si контактная разность потенциалов увеличивается.

Контактная разность потенциалов напряжение, который возникает в условии термодинамическом равновесие и ведет к прекращению диффузионного тока. При увеличении температуры, контактная разность уменьшается.

5. Исследование модели толщины ОПЗ

Модель толщины ОПЗ описывается выражением:

NA и ND – концентрация ионизированных атомов

φК – контактная разность потенциалов.

Т°,КN/5N5N
300W, мкМ1,0760,5400,266
3500,9450,4990,253
4000,7700,4530,239

Зависимость положения границ ОПЗ

а) в зависимость от концентраций в Б и Э при Т=300°К

б) в зависимости от температуры при фиксированном N.

W, мкМ
Ge0,540
Si0,726

При смене типа материала с Ge на Si толщина ОПЗ увеличивается.

Зависимость толщины ОПЗ при Т=300°К от U при прямом и обратном смещениях напряжения на диоде.

U, ВN/5N5N
Прямое0,10,8920,4680,237
0,150,7830,4280,221
0,20,6560,3830,204
0,250,4990,3320,185
0,30,2600,2720,164
Обратное-54,3951,9810,893
-106,1222,7491,234
-208,5903,8501,725
-3010,4934,6992,104
-4012,1015,4172,425

Толщина ОПЗ при увеличении температуры уменьшается незначительно.

Снижение высоты потенциального барьера при U>0 позволяет основным носителям пересекать область перехода, при этом они становятся неосновными носителями, создавая заметный ток (при ­Uпр, W¯). При U<0 эффекты диффузии более ощутимы, чем эффекты дрейфа (при ­Uобр, W­).


Часть №2

1. Исследование влияния температуры и концентрации примесей в База на вид ВАХ для PSPICE модели идеального диода

Модель ВАХ идеального диода:

Is – ток насыщения

φT – тепловой потенциал.

Модель идеального диода в логарифмическом масштабе:

Изменение концентрации примеси в базе влияет на ток насыщения (при увеличении концентрации, ток насыщения уменьшается), при этом ВАХ изменяется следующим образом:





Материал

GeSiGe(T+50)Si(T+50)
Is, A4,23Е-72,73Е-142,26Е-51,9Е-11

Т=300°К

Т+50=350°К

Для реальных переходов величина Is не является постоянной и в момент зависеть от напряжения, приложенного к переходу.

Это может быть вызвано, например, изменением свойств п/п (время жизни носителей, концентрации примесей) по объему Is в основном определяется удельным сопротивлением материала – с ­ρ, Is­ (что обусловлено увеличением концентрации неосновных носителей).

2. Исследование влияния процессов генерации-рекомбинации в ОПЗ на вид ВАХ для PSPICE модели диода

Уточненная модель ВАХ диода при прямом смещении с учетом процессов генерации-рекомбинации в ОПЗ:

φК – контактная разность потенциала

М – коэффициент лавинного умножения

ISR– ток насыщения ток рекомбинации

m – коэффициент неидеальности.

Влияние процессов генерации-рекомбинации (параметр N) на вид ВАХ:

N=5
N=3

При увеличении коэффициента неидеальности, N возрастает прямого тока начинается при больших значениях напряжения, чем в модели идеального диода.

Диапазоны напряжений, в которых начинает преобладать ток генерации-рекомбинации:

GeUпр = 0,62¸0,9 ВSi Uпр = 1,8¸2,2 В

Протекание процессов генерации-рекомбинации приводит к увеличению тока как в прямом, так и в обратном направлению.

Процессы генерации и рекомбинации связаны с различными концентрациями свободных носителей заряда (в области объемного заряда) при различных напряжениях на переходе.

3. Исследование влияние процессов высокого уровня инжекции на вид ВАХ для PSPICE модели диода

Уточненная модель ВАХ диода с учетом процессов высокого уровня инжекции при прямом смещении диода:

IKF – ток излома (ток перехода к высокому уровню инжекции)

Is – ток насыщении

m – коэффициент неидеальности

φТ – тепловой потенциал

Независимо от типа материала (Ge или Si) эффект высокого уровня инжекции начинает проявляться при любом положительном значении тока излома (IKF>0).


Зависимость Kinj от напряжения на диоде:

ВАХ с учетом процессов высокого уровня инжекции (при N=3)

При протекании прямого тока в переходе преобладает диффузионная компонента тока, состоящая из основных носителей заряда, преодолевающих потенциальный барьер и пронимающих в область п/п, для которых они являются неосновными носителями. И в том случае, когда концентрация неосновных носителей существенно возрастет по сравнению с равновесной концентрации, начнут преобладать процессы инжекции. Таким образом, процессы инжекции связаны концентрацией неосновных носителей в п/п.

4. Исследование влияния процессов пробоя на вид ВАХ

Уточненная модель обратной ветви ВАХ диода с учетом процессов пробоя:

IB0 – насыщенный ток пробоя

UB – напряжение пробоя

φТ – тепловой потенциал

Зависимость пробивного напряжения от:

(для плоского перехода)

а) тип материала (при NБ=2×1015см-3)

МатериалGeSi
Uпр, В95,368206,118

б) от концентрации легирующей примеси (для Ge)

NБ, см-34×10142×10151×1016
Uпр, В318,88295,36828,522

Диапазоны токов, при которых начинают проявляться эффекты пробоя:

Ge Iобр = 0,1¸0,25 АSi Iобр = 1¸1,15 А

График обратных ветвей ВАХ с учетом процессов пробоя:


Плоский p-n переходЦилиндрический p-n переходСферический p-n переход

При больших значениях Uобр ток Iобр незначительно возрастет до тех пор, пока напряжение не достигнет так называемого напряжения пробоя Uпр. после этого ток Iобр возрастет скачкообразно.

Известные различные механизмы пробоя – тепловая нестабильность, туннельный эффект (явление Зенера) и лавинный пробой.

Именно лавинный пробой является наиболее важным, т.к. именно он обуславливает верхнюю границу напряжения на диоде.

Часть №3

1. Исследования влияние концентрации в базе и температуры на значение равновесной барьерной емкости Cj0 (при U=0)

а) Si

Т=300°КN=2×1015см-3
N,см-3W,мкМCJO,ФТ,°КW,мкМCJO,Ф
4×10141,5376,74×10-123000,7261,427×10-11
2×10150,7261,427×10-113500,6961,88×10-11
1×10160,3413,04×10-114000,6291,523×10-11

б) Ge

Т=300°КN=2×1015см-3
N,см-3W,мкМCJO,ФТ,°КW,мкМCJO,Ф
4×10141,0761,32×10-113000,5402,62×10-11
2×10150,5402,62×10-113500,4992,84×10-11
1×10160,2665,33×10-114000,4533,13×10-11

При изменении NБ при постоянной температуре барьерная емкость при нулевом смещении (CJO) как для Ge, так и для Si увеличивается. Также барьерная емкость увеличивается и при увеличении температуры (при постоянной NБ). Отличие заключается в том, что Si величина барьерной емкости меньше, чем для Ge.

Модель равновесной барьерной емкости:

S – площадь поперечного сечения p-n перехода.

2. Исследование ВФХ барьерной емкости в зависимости от ее входных параметров

Модель барьерной емкости:

U<FC×φKU³FC×φK

Где

А = (1-FC)1+М, В = 1-FC(1+М).

CJO – равновесная барьерная емкость (емкость при нулевом смещении)

φК – контактная разность потенциалов

М – коэффициент лавинного умножения

FC – коэффициент неидеальности ВФХ при прямом смещении

t – время переноса заряда.

Т=300°КNБ=var
Вариант№1№2№3
М0,50,50,5
φК0,3190,4020,485
FC0,50,50,5
CJO, Ф1,32×10-112,62×10-115,33×10-11

При постоянной температуре (Т=300°К), при увеличении NБ (что в таблице соответствует увеличению контактной разности потенциалов) при неизменных коэффициентах M и FC, барьерная емкость увеличивается (на графике имеются два участка – участок на котором емкость остается практически постоянной (увеличивается незначительно) и участок, на котором емкость возрастает линейно (возрастание тем сильнее, чем больше концентрация NБ).

NБ = 2×1015 см-3Т = var
Вариант№1№2№3
М0,50,50,5
φК, В0,4020,3430,283
FC0,50,50,5
CJO, Ф2,62×10-112,84×10-113,13×10-11

При постоянной концентрации (NБ = 2×1015 см-3), при увеличении температуры (что в таблице соответствуют уменьшению φК) при неизменнык коэффициентах М и FC, барьерная емкость увеличивается (на графике также имеются два участка).


NБ,Т,FC = constM = var
Вариант№1№2№3
М0,10,51
φК, В0,3430,3430,343
FC0,50,50,5
CJO, Ф2,84×10-112,84×10-112,84×10-11

При увеличении коэффициента лавинного умножения М, при неизменных Т, NБ и FC, барьерная емкость увеличивается.

NБ,Т,М= constFC = var
Вариант№1№2№3
М0,50,50,5
φК, В0,3430,3430,343
FC0,40,50,6
CJO, Ф2,48×10-112,48×10-112,48×10-11

При увеличении коэффициента неидеальности ВФХ при прямом смещении (FC) и при неизменных NБ, Т и М, барьерная емкость увеличивается.

Ge (№1)Si (№2)
φК, В0,4020,812
Сj, Ф2,62×10-111,95×10-11

Для Ge (при постоянных Т и N, Т=300°К, NБ = 2×1015 см-3) барьерная емкость больше, чем для Si.

3. Исследование ВФХ диффузионной емкости в зависимости от ее входных параметров

Модель диффузионной емкости:

где t - время переноса заряда

а) NБ = 2×1015 см-3 б) Т=300°К


350°K
400°K
300°K
1×1016см-3
2×1015см-3
4×1014

а) При увеличении температуры увеличивается значение напряжения, начиная с которого диффузионная емкость резко увеличивается (при Т=300°К U=0,2В, а при Т=400°К U=0,5В).

б) При увеличении концентрации примеси в базе значение напряжения, начиная с которого диффузионная емкость резко возрастет, увеличивается незначительно (при NБ = 4×1014 см-3U=0,5В, а при NБ = 1×1016 см-3U=0,55В).

Для Ge и Si значения напряжения, при котором диффузионная емкость возрастает, резко отличаются:

U(Ge) = 0,5B

U(Si) = 1,4B

4. Исследование ВФХ барьерной и диффузионной емкости на совмещенном графике


По совмещенному графику видно, что при обратных напряжениях на переходе преобладает барьерная емкость, а при прямых напряжениях – диффузионная емкость.

Площадь p-n перехода непосредственно учитывается в модели барьерной емкости:

где

S – площадь поперечного сечения p-n перехода.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно