Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Прикладная механика

Тип Реферат
Предмет Физика
Просмотров
1670
Размер файла
286 б
Поделиться

Ознакомительный фрагмент работы:

Прикладная механика

Задача 1

Для стального трубчатого вала , который оборачивается с постоянной угловой скоростью, требуется:

1. Определить, пренебрегая трением в подшипниках, мощность на шкиве P0 .

2. Найти крутящиеся моменты, переданные каждым шкивом.

3. Построить эпюру моментов.

4. Из условия жесткости и крепости определить внутренний и внешний диаметры вала.

5. Построить эпюру углов закручивания по длине вала, приняв за недвижимый срез под первым левым шкивом.

Дано:

P1 = 24 кВт; a = 1,2 м;α = 0,8; G = 0,9·105Мпа.

P2 = 32 кВт; b = 1,0 м; ω = 130 рад/с;

P3 = 27 кВт; c = 0,4 м; [σ] = 180 МПа;

P4 = 12 кВт; d = 1,0 м; [θ] = 3,0º;

Решение:

Схема вала приведена на Рис. 1.

Рис. 1. Вал


Определяем мощность на шкиву P0 :

Pi = P1P2 - P0 + P4 -P0 = 0;

P0 = P1P2P3 + P4 = 24 – 32 – 27 + 12 = - 23 кВт.

1. Определяем крутящиеся моменты на шкивах:

Т1 = = = 0,185 кНм;

Т2 = = = 0,246 кНм;

Т3 = = = 0,207 кНм;

Т4 = = = 0,092 кНм;

Т0 = = = - 0,177 кНм.

2. Определяем крутящиеся моменты на участках вала:

Ткр1 = Т1 = 0,185 кНм;

Ткр2 = Т1 Т2 = 0,185 – 0,246 = - 0,061 кНм;

Ткр3 = Т1 Т2 Т0 = - 0,061 + 0,177 = 0,116 кНм;

Ткр4 = Т1 Т2 Т0Т3 = 0,116 – 0,207 = - 0,091 кНм.

Строим епюру крутящих моментов. Максимальный крутящий момент на первом участке:

Ткрmax= 0,185 кНм.

3. Определяем диаметр вала из условия прочности:


τ =

[τ]= 0,6·[σ] = 0,6·180 = 108 Мпа.

Для трубчатого вала

Wp =

Тогда условие крепости будет

τ =

Из условия получаем

D = = = 24,25 мм.

Определяем диаметр вала из условия жесткости

Θ =;

Ip = .

Допустимый угол закручивания задан в градусах, а нужно в радианах, поэтому:

[θ]= 3,0 = 0,0523 рад/м.

Условие жесткости:


Θ =

Из условия получаем:

D = = 32,3 мм.

Принимаем D = 33 мм.

d = α·D = 0,8·33 = 26,4 мм.

Тогда:

Ip = = = 6,87·104 мм4

4. Найдем углы закручивания участков вала по формуле:

φi = ;

φ1 = = 0,0359 рад = 2,06º;

φ2 = = - 0,00987 рад = - 0,565º;

φ3 = = 0,0075 рад = 0,43º;

φ4 = = - 0,0147 рад = - 0,84º.

Приняв за недвижимый срез под левым шкивом, строим эпюру угла закручивания:


α1 = 0;

α2 = φ1 = 2,06º;

α0 = φ1 + φ2 = 2,06º + (-0,565º) = 1,495º;

α3 = φ1 + φ2 + φ3 = 1,925º;

α4 = φ1 + φ2 + φ3 + φ4 = 1,085º.

Рис. 2. Вал и его эпюры

Задача 2

Для статически определимого бруса квадратного ступенчато-переменного сечения, нагруженного показанными на рис.3 осевыми сосредоточенными нагрузками, требуется:

1. Построить эпюру продольных сил.

2. Из условия прочности определить площади и размеры сечений участков бруса.

3. Вычислить абсолютные продольные деформации участков бруса и построить эпюру его осевых перемещений.

4. Сделать эскиз ступенчатого бруса.


Рис.3. Ступенчатый брус

Дано:

F1= +94 kH; l1=2,6 м;

F2=-56 kH; l2=2,0 м;

F3= +37 кН; l3= 1,2 м;

F4= +84 кН; l4=3,2 м;

[σ]= 170 МПа;Е = 1,9·105 МПа.

Решение:

1. Изображаем в масштабе (по длине) брус и указываем нагрузку и размеры участков. На каждом участке проводим сечение и рассматриваем равновесие нижней отсеченной части, находим продольную силу в этих сечениях. Так как на исходном рисунке все силы направлены вниз, то продольная сила в любом сечении будет равна алгебраической сумме всех заданных сил, находящихся ниже данного сечения.

Сечение 1-1:

N1=F1=94 кН;

Сечение 2-2:

N2=F1+F2=90+(-56)= 38 кН;

Сечение 3-3: N3= F1+ F2+ F3 = 90 + (-56) + 37 = 75 кН;

Сечение 4-4: N4=F1+ F2+ F3+ F4= 90 + (-56) + 37 + 84 = 159 кН.


По этим данным строим эпюру N, учитывая, что на протяжении участка продольная сила постоянна.

2. Из условия прочности:

σ =

находим площади поперечных сечений участков бруса:

A1 ≥ = = 552,9 мм2;

а1 = = =23,51 мм;

A2 ≥ = = 223,53 мм2;

а2 = = = 14,95 мм;

A3 ≥ = = 441,18 мм2;

а3 = = =21 мм;

А4 ≥ = = 935,29 мм2;

а4 = = = 30,58 мм.

Примечание: N и [σ] имеют одинаковый знак поэтому при вычислении площади поперечного сечения их значения берутся по модулю.

3.Определяем удлинения (укорочения) участка бруса:

Δl1 = = = 23,2 мм;

Δl2 = = = 17,89 мм;

Δl3 = = = 10,73 мм;

Δl4 = = = 28,63 мм.

Строим эпюру перемещений, для чего определяем перемещение точек А,В, С. Dи Е.

σA= 0;

σВ = σА + Δl4= 0 + 28,63 = 28,63 мм ;

σC = σВ + Δl3 = 28,63 + 10,73 = 39,36 мм ;

σD = σC + Δl2= 39,36 + 17,89 = 57,25 мм;

σE= σD + Δl1= 57,25 +23,2 =80,45мм .

4.


Делаем эскиз ступенчатого бруса.

Задача 3

Для заданной двухопорной балки, нагруженной двумя сосредоточенными силами F1 и F2, равномерно распределенной нагрузкой q и парой сил М, требуется определить опорные реакции (Рис.5).


Рис.5. Схема нагрузки балки

Дано:

F1 = 32 кН; а = 1,0 м;

F2 = 12 кН; b = 1,2 м;

q = 20 кН/м; с = 1,6 м;

М = 32 кН·м; d = 1,4 м;

l= 1,2 м.

Решение:

1. Составляем уравнение равновесия балки:

∑МА = 0;

- F1·a – q(c+d) () – F2 (b+c) – M + RB (b+c+d+l) = 0;

МВ = 0;

- F1 (a+b+c+d+l) – RA (b+c+d+l) + F2 (d+l) + q(c+d) () – M= 0;

2. Определяем реакции опор:

RB= ==

= 48,07 кН;

RA = ==

= - 8,07 кН;


Отрицательное значение RAуказывает, что направление силы RAпротивоположно тому, которое изображено на рисунке, т.е. опорная реакция RAнаправлена по вертиккали вниз.

Проверка:

Fiy = 0;

F1 + RA - F2q(c+d) + RB =0;

32 – 8,07 – 12 - 20·3,0 + 48,07 = 0,

Потому

RA= - 8,07 кН;

RB = 48,07 кН.

Задача 4

Для заданной двухопорной балки, нагруженной двумя сосредоточенными силами, распределенной нагрузкой и парой сил, требуется:

1. Определить опорные реакции.

2.Построить эпюры поперечных сил и изгибающих моментов и определить сечение, в котором действует наибольший изгибающий момент.

3.Исходя из условия прочности по нормальным напряжениям, определить требуемый момент сопротивления и подобрать двутавровое, круглое и прямоугольное сечение (с заданным соотношением h/b) и сравнить их по экономичности, приняв для стали [σ]= 160 МПа.

Схема балки приведена на рис.6.

Дано:

а = 1,6 м;

b = 1,2 м;

с = 1,0 м;

d = 1,6 м;

l = 1,4 м.

F1= 26 кН;

F2= 12 кН;

q = 16 кН /м;

М = 32 кН·м;

h/b = 2.

Рис. 6. Схема нагружения балки

Решение:

1.Определяем опорные реакции:

= 0;

-RA·5,4- F1·2,6 – M + 3,8·1,9 - F2·1,4 = 0

RA = = - 0,16 кН;

= 0;

RВ ·5,4 + F1·2,8- 3,8·3,5 –М - F2·6,8 = 0

RВ == 46,96 кН.

Проверка:

= 0.

RA - 3,8 + F1 + RВ - F2 = -0,16 – 60,8 + 26 + 46,96 – 12 = 0.

Значит, RA = - 0,16 кН;

RВ = 46,96 кН.

2. Разбиваем балку на 5 участков и, проведя на каждом участке произвольное сечение, определяем поперечную силу и изгибающий момент:

Участок I: 0≤ х1 ≤ 1,6 м

Qx1 = RA = - 0,16 кН

Мx1 = RA·х1= - 0,16 · х1

х1 = 0 МА = 0

х1 = 1,6 м МА = -0,256 кН·м

Участок II: 0≤ х2 ≤ 1,2 м

Qx2 = RA - q х2

Мx2 = RA(1,6 + х2) - q = -0,16(1,6 + х2) - 16·

x2 = 0 Qx2 = - 0,16 кН Мx2 = -0,256 кН·м

x2 = 1,2 мQк = -19,36 кН Мк = -11,968 кН·м

Участок III: 0≤ х3 ≤ 1,0 м

Q = RA – q (1,2 + х3) +F1 = -0,16 – 16(1,2 + х3) + 26 = 25,84 – 16(1,2 + х3)

М = RA (2,8 + х3) +F1· х3- = -0,16(2,8+x3) + 26 x3-

x3 = 0 Qk = 6,64 кН Мk = -11,968 кН·м

x3 = 1,0мQ = - 9,36 кН М = -13,328 кН·м

Участок IV: 0≤ х4 ≤ 1,4 м

Q = F2 =12 кН

М = -F2 х4 = -12 х4

х4 = 0 М = 0

х4 = 1,4 м М = - 16,8 кН·м

Участок V: 0≤ х5 ≤ 1,6 м

Q = F2 RВ + q· х5 = 12 – 46,96 + 16 х5 = -34,96 + 16 х5

M = -F2(1,4 + х5) + RВ х5 - q· = -12(1,4 + х5) +46,96 х5 - 16

x5 = 0 Q = -34,96 кН М = -16,8 кН·м

x5 = 1,6 мQ = -9,36 кН М = 18,656 кН·м

По полученным данным строим эпюры Q и М (рис.7).

На участке III поперечная сила Q принимает нулевое значение, поэтому в этом положении на эпюре «М» будет екстремум.

Qх3 = 0;

25,84 – 16(1,2+х3) = 0;

Х3 = = 0,415 м

М (0,415) = - 10,59 кНм;

Наибольшее значение изгибающего момента Мmax = 18,856 кН·м

1. Из условия прочности по нормальным напряжениям:

σmax = ≤[σ]

находим требуемый момент сопротивления:

Wx= = 181 см3

По таблицам сортамента выбираем двутавр № 20, у которого Wx = 184 см3 а площадь поперечного сечения А = 26,8 см2.

Подбираем прямоугольное сечение:

Wx =

при h = 2·b

Wx =

Откуда b = = = 6,5 см

h = 2b = 13 см

А0 = b·h = 6,5 ·13= 84,5 см2

Подбираем круглое сечение

Wx =

d = = 12,15 см

А0 = == 115,88 см2


Находим отношение площадей, приняв площадь сечения двутавра за единицу:

А1 : Ао : А0 = 1 : 3,15 : 4,32.

Список использованой литературы

1. Степин П.А. Сопротивление материалов: Учебник – М., Высшая школа , 1983 – 303 с.

2. Пособие к решению задач по сопротивлению материалов: Уч. пособие/ Миролюбов И.Н. и др. – М., Высшая школа, 1985 – 399с.

3. Тарг С.М. Краткий курс теоретической механики – М., Высшая школа, 1986 – 416 с.

4. Яблонский А.А. Сборник заданий для курсовых работ по теоретической механике – М., Высшая школа, 1985 – 367 с.

5. Архипов О.Г., Кравцова Е.М., Галабурда Н.Ш. Механіка: Навч. посібник- Луганськ: Вид-во Східноукр. Нац. Ун-ту, 2005 – 256с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно