Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Графическое решение задачи линейного программирования в экономике

Тип Реферат
Предмет Экономика
Просмотров
1320
Размер файла
55 б
Поделиться

Ознакомительный фрагмент работы:

Графическое решение задачи линейного программирования в экономике

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ

Контрольная работа

по дисциплине:

"Экономическая информатика"

Выполнила студентка:

гр. ПВ 09-1з

Проверил:

Краматорск, 2010

Задание № 1. Графическое решение задачи линейного программирования

Решить графически и с помощью Excel формализованную задачу линейного программирования.

3x1-x2³9,2x1+x2£50,x1+4x2³19;

f=x1+5x2. (max).

Графическое решение задачи линейного программирования

Экономический вывод:

Для получения максимальной прибыли в размере 35 ед. план выпуска продукции должен быть таким: изделие 1 - 9 единиц, выпуск изделия 2 - 16 единицы, выпуск изделия 3 - 19 единиц. При этом, затраты ресурсов составят:

Избыточным является ресурс "2", недостаточным - "1" и "3".

Пункты отправления

Запасы

Пункты назначения

B1

B2

B3

B4

A1

180

2

3

4

3

A2

60

5

3

1

2

A3

80

2

1

4

2

Потребности

120

40

60

80

Потребитель 1

Потреитель 2

Потребитель 3

Потребитель 4

Поставщик 1

46

32

46

37

160

Поставщик 2

31

6

4

18

60

Поставщик 1

43

2

11

25

80

120

40

60

80

Грузооборот

875,8

т. - км

Переменные

x1

x2

Значения

11,8

26,4

Нижн граница

0

0

Верх граница

F

1

5

=СУММПРОИЗВ

(C$3: D$3; C6: D6)

max

Коэффициенты целевой функции

Значение

Фактические ресурсы

Неиспользованные ресурсы

Коэффициенты

Система ограничений

-3

1

=СУММПРОИЗВ

(C$3: D$3; C9: D9)

<=

-9

=G9-E9

2

1

=СУММПРОИЗВ

(C$3: D$3; C10: D10)

<=

50

=G10-E10

1

-4

=СУММПРОИЗВ

(C$3: D$3; C11: D11)

<=

-19

=G11-E11

Задание №2. Транспортная задача

На две базы А1 и А2 поступил однородный груз в количестве а1 т на базу А1 и а2 т на базу А2. Полученный груз требуется перевезти в три пункта: b1 т в пункт B1, b2 т в пункт B2, b3 т в пункт B3. Расстояния между пунктами отправления и пунктами назначения указаны в матрице R. Составить план перевозок с минимальными расходами. Решить задачу при заданных запасах и потребностях.

Стоимость одного тонно-километра принять за единицу.

Вариант

А1

А2

B1

B2

B3

R

6

200

230

190

100

140

12 5 16

14 10 8

Пусть xij - количество груза, перевезенного из пункта Аi в пункт Вj. Проверим соответствие запасов и потребностей: 200+230=430 = 190+100+140=430. Задача замкнутая. Целевая функция F равна стоимости всех перевозок:

F = 12x11+5x12+16x13+14x21+10x22+8x23 (min).

Система ограничений определяется следующими условиями:

а) количество вывозимых грузов равно запасам:

x11 + x12+ x13 = 200;

x21 + x22+ x23 = 230.

б) количество ввозимых грузов равно потребностям:

x11 + x21 = 190;

x12 + x22 = 100;

x13 + x23 = 140

в) количество вывозимых грузов неотрицательно:

x11 ³0; x12 ³0; x13 ³0

x21 ³0; x22 ³0; x23 ³0

Получили формализованную задачу:

F = 12x11+5x12+16x13+14x21+10x22+8x23 (min).

x11 + x12+ x13 = 200;

x21 + x22+ x23 = 230.

x11 + x21 = 190;

x12 + x22 = 100;

x13 + x23 = 140

x11 ³0

x12 ³0

x13 ³0

x21 ³0

x22 ³0

x23 ³0

Экономический вывод:

Для получения грузооборота с минимальными расходами в размере 4048 т. км. Поставщик 1 должен предоставить потребителю 1 - 100 т груза, а потребителю 2 - 100 т груза. Поставщик 2 должен предоставить потребителю 1 - 90 т груза, а потребителю 3 - 140 т груза.

Таблица.

Пункты отправления

Запасы

Пункты назначения

B1

B2

B3

A1

200

12

5

16

A2

230

14

10

8

Потребности

190

100

140

Потре-битель 1

Потре-битель 2

Потре-битель 3

Поставщик 1

100

100

0

200

Поставщик 2

90

0

140

230

190

100

140

Грузооборот

4080

т. - км

Пункты отправления

Запасы

Пункты назначения

B1

B2

B3

A1

200

12

5

16

A2

230

14

10

8

Потребности

190

100

140

Потребитель 1

Потребитель 2

Потребитель 3

Поставщик 1

0

100

100

=СУММ (B9: D9)

Поставщик 2

190

0

40

=СУММ (B10: D10)

=СУММ (B9: B10)

=СУММ (C9: C10)

=СУММ (D9: D10)

Грузооборот

=СУММПРОИЗВ (B9: D10; C3: E4)

т. - км

Задание № 3. Межотраслевая балансовая модель

Имеется трехотраслевая балансовая модель с матрицей коэффициентов затрат.

где aij - затраты i-ой отрасли на производство единицы продукции j-ой отрасли (в товарном или в денежном выражении).

Фонды накопления отраслей заданы числами d1, d2, d3.

Производственные мощности отраслей ограничивают возможности ее валового выпуска числами r1, r2, r3.

Определить оптимальный валовой выпуск всех отраслей, максимизирующий стоимость суммарного конечного продукта, если на конечный продукт накладывается некоторое ограничение.

Цена единицы конечного продукта 1, 2 и 3 отраслей соответственно равна: c1, c2, c3.

товарных единиц

k1: k2: k3 = 2: 1: 2;

R= (240, 420, 230), C= (2, 4,3).

Формализация задачи.

Пусть xi - валовой выпуск i-й отрасли, i=1,2,3. Так как на собственное производство, а также на производство продукции 2-й отрасли первая отрасль произведенную продукцию не расходует, суммарный конечный продукт равен произведенной продукции K1=x1.

Вся произведенная продукция будет продана и выручка составит c1x1.

Чтобы определить прибыль 1-й отрасли, из полученной ею выручки нужно вычесть суммы, затраченные на производство продукции 1-й, 2-й и 3-й отраслей:

К1=x1- (a11x1+a12x2 +a13x3).

Аналогично для 2-й отрасли


K2=x2, К2=x2- (a21x1+a22x2+a23x3).

Подставляя числовые значения, получим выражения для прибыли 1-й 2-й и 3-й отраслей:

К1=x1- (0,21x1+0,07x2+0,12x3).

К2=x2- (0,06x1+0,03x2+0,15x3).

К3=x3- (0,2x1+0,14x2+0,03x3).

Целевая функция - это цена всей проданной продукции: с1К12К23К3.

Следовательно, целевая функция задачи такая:

F=с1К12К23К3 (max).

Подставляя в последнюю формулу значения с1, c2, c3 выражения K1, K2, K3 получаем выражение для целевой функции

F = 2 (x1- (0,21x1+0,07x2+0,12x3)) +4 (x2- (0,06x1+0,03x2+0,15x3)) +3 (x3- (0,2x1+0,14x2+0,03x3)) (max).

Приведя подобные члены, получим: F=0.74x1+3.32x2+2.07x3 (max).

Ограничения задачи:

1) По производственным мощностям: x1£240, x2£420, x3£230

2) По комплектности: K2: K3 = 1: 2. Это условие равносильно условию т.е. условию или .

4) Выпуск продукции: x1³0, x2³0, x3³0

Формализованная задача имеет вид:


F=0.74x1+3.32x2+2.07x3 (max).

x1£240,x2£420,x3£230,.

x1³0

x2³0

x3³0

Матрица затрат

0,21

0,07

0,12

0,06

0,03

0,15

0,2

0,14

0,03

240

0

0

0

0

230

0

420

0

240

420

230

Целевая функция

144

max

R

300

200

350

Матрица затрат

0,21

0,07

0,12

0,06

0,03

0,15

0,2

0,14

0,03

240

0

0

0

0

230

0

420

0

=СУММ (A7: A9)

=СУММ (B7: B9)

=СУММ (C7: C9)

Целевая функция

=СУММПРОИЗВ (B2: D4; A7: C9)

max

R

300

200

350

Задание № 4. Задачи разных типов

Формализовать задачу линейного программирования и решить с помощью Excel. Сделать экономический вывод.

Задание 1.

На звероферме могут выращиваться черно-бурые лисицы и песцы. Для обеспечения нормальных условий их выращивания используется три вида кормов. Количество единиц корма, расходуемых на одно животное, запасы кормов и цена 1 шкурки указаны в таблице.

Вид корма

Кол-во ед. на 1 животное

Общее кол-во корма

лисица

песец

I

2

3

180

II

4

1

240

III

6

7

426

Цена

16

12

Определить, сколько лисиц и песцов необходимо выращивать, чтобы получить максимальную цену от продажи их шкурок.

Обозначим лисиц через x1, песцов через - x2.

Определим прибыль от выращивания животных. Прибыль от выращивания лисицы составляет по условию 16 ден. ед. План выращивания лисиц - x1 ед. Прибыль от выращивания песцов составляет по условию 12 ден. ед. План выращивания песцов - x2 ед. Суммарная прибыль от выращивания всех животных составит (16x1+12x2) ден. ед. Тогда целевая функция имеет вид: F=16x1+12x2, - суммарная прибыль должна быть наибольшей.

Составим систему ограничений.

1. Ограничение на использование сырья.

Для того чтобы вырастить одну лисицу необходимо 2 ед. корма 1, необходимо 2х1 корма для лисиц, для того чтобы вырастить одного песца необходимо 3 ед. корма 1, необходимо 3х2 корма для песцов. Количество корма 1 для животных не должно превышать 180 единиц. Ограничение на использование корма 1: 2x1+3x2£180

Для того чтобы вырастить одну лисицу необходимо 4 ед. корма 2, необходимо 4х1 корма для лисиц, для того чтобы вырастить одного песца необходимо 1 ед. корма 2, необходимо 1х2 корма для песцов. Количество корма 2 для животных не должно превышать 240 единиц. Ограничение на использование корма 2: 4x1+1x2£240

Для того чтобы вырастить одну лисицу необходимо 6 ед. корма 3, необходимо 6х1 корма для лисиц, для того чтобы вырастить одного песца необходимо 7 ед. корма 3, необходимо 7х2 корма для песцов. Количество корма 3 для животных не должно превышать 426 единиц. Ограничение на использование корма 3: 6x1+7x2£426

Получили математическую модель задачи:

F=16x1+12x2®max

2x1+3x2£180

4x1+1x2£240

6x1+7x2£426

x1³0, x2³0

Решив задачу одним из способов, рассмотренных в приложении, получим значения переменных: x1=57; x2=12; Fmax=1056.

Решение задачи линейного программирования включает в себя не только формализацию и математическое решение, но и экономический анализ полученных результатов.

Экономический вывод:

Для получения максимальной прибыли в размере 1056 ден. ед. план развода животных должен быть таким: лисиц - 57 единиц, песец - 12 единиц. При этом, затраты ресурсов составят:

"Корм 1" - 150 единицы при запасе 180 ед. (остаток 30 единиц);

"Корм 2" - 240 кг единицы при запасе 240 ед.;

"Корм 3" - 426 единиц при запасе 426 ед. .

Избыточным является ресурс "Корм 1", недостаточным - "Корм 2" и "Корм3".

Вид корма

Кол-во ед. на 1 животное

Общее кол-во корма

лисица

песец

I

2

3

180

II

4

1

240

III

6

7

426

Цена

16

12

Оптимальное кол-во

57

12

Реальные затраты

114

36

150

I

228

12

240

II

342

84

426

III

Целевая функция

1056

max

Вид корма

Кол-во ед. на 1 животное

Общее кол-во корма

лисица

песец

I

2

3

180

II

4

1

240

III

6

7

426

Цена

16

12

Оптимальное кол-во

57,0000003181818

11,9999997272727

Реальные затраты

=СУММПРОИЗВ (B12; B7)

=СУММПРОИЗВ (C12; C7)

180

I

=СУММПРОИЗВ (B12; B8)

=СУММПРОИЗВ (C12; C8)

=СУММ

(B14: C14)

II

=СУММПРОИЗВ (B12; B9)

=СУММПРОИЗВ (C12; C9)

=СУММ

(B15: C15)

III

Целевая функция

=СУММПРОИЗВ (B12: C12; B10: C10)

max

Задание 2.

Для кормления подопытного животного ему необходимо давать ежедневно не менее 15 ед. химического вещества А1 (витамина или некоторой соли) и 15 ед. химического вещества А2. Не имея возможности давать вещество А1 или А2 в чистом виде, можно приобретать вещество В1 по 1 д. е. или В2 по 3 д. е. за 1 кг, причем каждый кг В1 содержит 1 ед. А1 и 3 ед. А2, а кг В2 - 6 ед. А1 и 2 ед. А2.

Запасы веществ на складе: В1 - 7 кг, В2 - 9 кг.

Определить оптимальную закупку веществ В1 и В2 для ежедневного рациона.

Формализация задачи:

Пусть x1 - количество В1, а x2 - количество В2, которое необходимо использовать в рационе. Тогда целевая функция - стоимость продуктов равна:

F = 1x1+3x2 - min.

Составим систему ограничений.

1. Ограничение на содержание в рационе кормовых единиц - не менее 15 вещества А1 и не менее 15 вещества А2. В одной единице В1 содержится по 1 кормовой единице вещества А1 и 3 кормовые единицы вещества А2. В одной единице В2 содержится по 6 кормовых единиц вещества А1 и 2 кормовые единицы вещества А2.

2. Ограничение на содержание в рационе вещества А1 - не менее 15 единиц. Значит, 1x1+6x2 ≥ 15.

3. Аналогично рассуждая, составим ограничения на содержание вещества А2 - не менее 15 единиц. Значит, 3x1+2x2 ≥ 15.

4. Ограничение запасы вещества В1 и В2 x1≤7; x2≤9;

Так как x1 и x2 - количество продукта, то x1 и x2 неотрицательны.

Получили математическую модель задачи о смесях:

F = 1x1+3x2 - min.

1x1+6x2 ≥ 15.

3x1+2x2 ≥ 15.

x1≤7

x2≤9

x1 ³0

x2 ³0

Решение: x1=4; x2=2; Fmin=10.

Экономический вывод:

В суточном рационе должно содержаться 4 единицы вещества В1 и 2 единицы вещества В2. Стоимость такого рациона составит 10 ден. ед.

Питательность рациона составит:

Вещество А1 - 16 единиц, А2 - 16 единиц.

Хим вещество

Вещество заменитель

общее необходимое кол-во /cутки.

B1

B2

A1

1

6

15

A2

3

2

15

цена

1

3

запасы

7

9

Оптимальная закупка

B1

B2

4

2

Реальные замена

4

12

16

12

4

16

Сумма

4

6

Целевая функция

10

Хим вещество

Вещество заменитель

общее нелбходимое

кол-во / cутки.

B1

B2

A1

1

6

15

A2

3

2

15

цена

1

3

запасы

7

9

Оптимальная закупка

B1

B2

4

2

Реальные замена

=B9*B4

=C9*C4

=СУММ (B10: C10)

=B9*B5

=C9*C5

=СУММ (B11: C11)

Сумма

=B9*B6

=C9*C6

Целевая функция

=СУММПРОИЗВ

(B9: C9; B6: C6)

Задание 3.

На трех складах оптовой базы сосредоточен однородный груз в количествах 180, 60 и 80 единиц.

Этот груз необходимо перевезти в 4 магазина. Каждый из магазинов должен получить соответственно 120, 60, 40 и 80 единиц груза.

Тарифы перевозок единицы груза из каждого склада во все магазины задаются матрицей

2 3 4 3

С = 5 3 1 2

2 1 4 2

Составить план перевозок, стоимость которых является минимальной.

Пункты

Отправления

Запасы

Пункты назначения

B1

B2

B3

B4

A1

180

x11

2

X12

3

x13

4

x14

3

A2

60

X21

5

x22

3

X23

1

x24

2

A3

80

X31

2

X32

1

x33

4

x34

2

Потребности

120

60

40

80

Пусть число пунктов отправления и число пунктов назначения равно 4 (n=4, m=4). Запасы, потребности и стоимость перевозок указаны в таблице:

Пусть xij - количество груза, перевезенного из пункта Аi в пункт Вj. Проверим соответствие запасов и потребностей:


180+60+80=320 > 120+60+40+80=300.

Задача открытая.

Целевая функция F равна стоимости всех перевозок:

F = 2x11+3x12+4x13+ 3x14+5x21+3x22+1x23+2x24+2x31+1x32+4x33+2x34 (min).

Система ограничений определяется следующими условиями:

а) количество вывозимых грузов не больше запасов:

x11+x12+x13+x14£ 180;

x21+x22+x23+x24£ 60;

x31+x32+x33+x34£ 80.

б) количество ввозимых грузов равно потребностям:

x11+x21+x31= 120;

x12+x22+x32= 60;

x13+x23+x33= 40;

x14+x24+x34= 80;

в) количество вывозимых грузов неотрицательно:

x11 ³0; x12 ³0; x13 ³0; x14 ³0

x21 ³0; x22 ³0; x23 ³0; x24 ³0

x31 ³0; x32 ³0; x33 ³0; x34 ³0

Получили формализованную задачу:

F = 2x11+3x12+4x13+ 3x14+5x21+3x22+1x23+2x24+2x31+1x32+4x33+2x34 (min).

x11+x12+x13+x14£ 180;

x21+x22+x23+x24£ 60;

x31+x32+x33+x34£ 80.

x11+x21+x31= 120;

x12+x22+x32= 60;

x13+x23+x33= 40;

x14+x24+x34= 80;

x11 ³0; x12 ³0; x13 ³0; x14 ³0; x21 ³0; x22 ³0; x23 ³0; x24 ³0; x31 ³0; x32 ³0;

x33 ³0; x34 ³0.

Пункты отправления

Запасы

Пункты назначения

B1

B2

B3

B4

A1

180

2

3

4

3

A2

60

5

3

1

2

A3

80

2

1

4

2

Потребности

120

40

60

80

Потре-битель 1

Потре-битель 2

Потре-битель 3

Потре-битель 4

Поставщик 1

46

32

46

37

160

Поставщик 2

31

6

4

18

60

Поставщик 1

43

2

11

25

80

120

40

60

80

Грузооборот

875,8

т. - км

Пункты отправления

Запасы

Пункты назначения

B1

B2

B3

B4

A1

180

2

3

4

3

A2

60

5

3

1

2

A3

80

2

1

4

2

Потребности

120

40

60

80

Потребитель 1

Потребитель 2

Потребитель 3

Потребитель 4

Поставщик 1

39,4444451388889

38,3333334166667

45,5555562777778

36,6666671666667

=СУММ (B11: E11)

Поставщик 2

37,7777775555556

0

3,88888869444445

18,33333375

=СУММ (B12: E12)

Поставщик 1

42,7777783055556

1,66666658333333

10,5555550277778

25,0000000833333

=СУММ (B13: E13)

=СУММ (B11: B13)

=СУММ (C11: C13)

=СУММ (D11: D13)

=СУММ (E11: E13)

Грузооборот

=СУММПРОИЗВ (B11: E13; C3: F5)

т. - км


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно