это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
Ознакомительный фрагмент работы:
Кубанский государственный технологический университет
Кафедра автоматизации технологических процессов
Задание на контрольную работу
По дисциплине “Автоматизированное управление дискретными процессами” для студентов заочной формы обучения специальности 21.01 — “Автоматика и управление в технических системах” на тему: “Синтез управляющего автомата модели LEGO — “транспортная тележка” и моделирование её движения вдоль трассы”
Выдано:
Аспирантом каф. АПП 06.09.99 /Напылов Р.Н./
студенту гр. ____________ /____________/
Краснодар 1999
Таблица 1.1 – Кодировка управляющих сигналов
Разряд сигнала X | Управляющее действие |
| X0 | 1 – двигатель тележки включен 0 – двигатель тележки выключен |
| X1 | 1 – поворотный двигатель отрабатывает влево 0 – двигатель влево не отрабатывает |
| X2 | 1 – поворотный двигатель отрабатывает вправо 0 – двигатель вправо не отрабатывает |
Таблица 1.2 – Кодировка выходных сигналов
Разряд сигнала Y | Событие |
| Y0 | 1 – левый датчик над светлой точкой трассы 0 – левый датчик над тёмной точкой трассы |
| Y1 | 1 – правый датчик над светлой точкой трассы 0 – правый датчик над тёмной точкой трассы |
Сигналы Y используются в качестве обратной связи управляющего автомата. По изменению этих сигналов возможно судить о текущем положении тележки относительно белой полосы трассы. Сигналы X вырабатываются управляющим автоматом в зависимости от поведения во времени сигналов Y так, что бы обеспечить совпадение траекторий движения тележки и трассы.
1) тягловое усилие постоянное;
2) приведённая сила трения пропорциональна линейной скорости движения тележки;
3) сила трения , подменяющая реакцию в момент, когда (переднее колесо проскальзывает), постоянна и пропорциональна массе тележки;
4) сила трения , подменяющая реакцию в момент, когда (тележку заносит), также постоянна и пропорциональна массе тележки;
5) масса тележки и её момент инерции относительно центра масс связаны зависимостью: , как если бы вся масса тележки была сосредоточена в стержне (рисунок 1.1).
Вывести модель динамики транспортной тележки. Положение центра масс тележки в плоской системе координат задавать вектором положения . Положение точки приложения силы тяги привода задавать вектором .
Таблица 5.1 – Кодировка входного алфавита управляющего автомата
| Y0 | Y1 | Y |
0 0 1 1 | 0 1 0 1 | 0 1 2 3 |
Перечень возможных состояний автомата, отождествлённых с ситуационными событиями транспортной тележки, приводится ниже.
Таблица 5.2 – Перечень состояний управляющего автомата транспортной тележки
| Код состояния S | Описание состояния |
0 1 2 3 | Исходное состояние неуправляемого движения; Поворот вправо (поворотный двигатель непрерывно отрабатывает вправо); Поворот влево (поворотный двигатель непрерывно отрабатывает влево); Конфликт поворотов. |
― В исходном состоянии тележка непрерывно движется под действием привода. Ни один из датчиков контраста не находится над белой полосой трассы. Поворотный двигатель остановлен;
― При возникновении белой полосы под левым датчиком контраста включается поворотный двигатель на отработку влево. Привод отключается и далее следует движение по инерции, что уменьшает вероятность заноса тележки;
― Как только левый датчик контраста “сходит” с белой полосы поворотный двигатель останавливается в текущем состоянии, а привод вновь запускается;
― При возникновении белой полосы под правым датчиком — поведение транспортной тележки аналогично;
― Возникновение белой полосы под правым и левым датчиком свидетельствует о том, что тележка движется перпендикулярно трассе. Это сбойная ситуация, при которой следует отключение привода и блокировка управляющего автомата. Нормальный ход работы автомата может быть восстановлен только “сбросом”.
Таблица 5.3 – Таблицы переходов и выходов управляющего автомата
Код Si | Для X0 | Для X1 | Для X2 | |||||||||
| y | y | y | ||||||||||
| 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | |
| 0 | ||||||||||||
Код Si | Для X0 | Для X1 | Для X2 | |||||||||
| y | y | y | ||||||||||
| 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | |
| 1 | ||||||||||||
| 2 | ||||||||||||
| 3 | ||||||||||||
Таблица 5.4 – Таблицы переходов и выходов несократимого автомата
Код Si | Для X0 | Для X1 | Для X2 | |||||||||
| y | y | y | ||||||||||
| 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | |
| 0 | ||||||||||||
| 1 | ||||||||||||
Судя по таблице 5.5, минимизации поддаётся только функция переходов . Минимизируем её методом карт Карно (см. рис. 5.1).
Таблица 5.5 – Таблица истинности комбинационной схемы автомата
| S[j] | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| Y0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| Y1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| S[j+1] | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| X0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| X1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| X2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Функция переходов:
. (5.1)
Функции выходов в СДНФ по таблице истинности:
. (5.2)
Для удобства реализации комбинационной схемы представим рассматриваемые функции в базисе “ИЛИ-НЕ”:
. (5.3)
Особенностью полученной схемы является то, что она не содержит элементы памяти и задержки и, соответственно, не является тактируемой. Такой вариант реализации возможен для автоматов с двумя состояниями, одно из которых является абсолютно устойчивым. В нашем случае состояние блокировки есть абсолютно устойчивое состояние. Если комбинационная схема сформируем это состояние, то за счёт обратной связи по линии S запрещается реакция выходов X на изменение входных сигналов Y. Выход из этого устойчивого состояния возможен только принудительным обнулением линии S единичным уровнем на линии “Сброс”. Конфликтных “Состязаний” в рассматриваемом автомате не возникает.
, (6.1)
где — угол поворота переднего колеса.
Зная из рисунка, что
, (6.2)
получим:
. (6.3)
Положительные значения вращающего момента соответствуют повороту тележки влево, отрицательные — вправо.
. (6.4)
Для нашего случая важно знать направление действия силы , которое зависит от направлений и величин составляющих рассматриваемой суммы. В свою очередь направления составляющих рассматриваются относительно положения габаритной определяющей, которое характеризуется единичным вектором:
, (6.5)
где — вектор, задающий координаты центра масс тележки;
— вектор, задающий координаты точки приложения силы тяги ;
— габаритная определяющая транспортной тележки.
, (6.6)
где — единичный вектор, ортогональный вектору ,
или
. (6.7)
Если имеет координаты , то имеет координаты . Тогда вектор , выраженный в базисе Декартовой системы координат, имеет вид:
, (6.8)
где — матрица (оператор) поворота вектора на угол .
Теперь, используя выражение (6.2), окончательно найдём, что
. (6.9)
, (6.10)
. (6.11)
, (6.12)
где — центростремительное ускорение.
Если траектория движения центра масс задаётся вектором , то
, (6.13)
где — вектор скорости центра масс;
— вектор полного ускорения;
— оператор скалярного произведения векторов.
Это физический факт. Вывод его опускаем.
. (6.14)
, (6.15)
где — момент инерции тележки относительно центра масс.
Зная угловое ускорение можно найти тангенциальное в скалярной форме:
,
а затем и в векторной:
, (6.16)
где — векторная скорость изменения ориентации габаритной определяющей.
С другой стороны, — вектор тангенциального ускорения может быть выражен через полное ускорение вектора :
, (6.17)
где — вектор полного ускорения изменения ориентации габаритной определяющей;
В результате имеем связь:
. (6.18)
, (6.19)
где — коэффициент трения,
на основании всех найденных зависимостей путём исключения неизвестных нетрудно получить систему дифференциальных уравнений, являющуюся моделью динамики транспортной тележки в векторной форме. Записать эту систему в одну строчку проблематично, поэтому ограничимся указанием того, что первое дифференциальное уравнение системы строится на основе выражений: (6.3), (6.4), (6.5), (6.9), (6.10), (6.11), (6.13), (6.14), (6.19), а второе на основе: (6.3), (6.5), (6.18). Решением первого уравнения является зависимость траектории центра масс тележки от времени, решением второго — ориентация во времени вектора .
Полученная система не имеет аналитического решения и поэтому должна решаться численно при любой зависимости от времени угла поворота и четырёх начальных условиях типа:
, (6.20)
которые показывают, что в нулевой момент времени центр масс тележки находится в начале координат, скорость тележки равна нулю (и поступательная и вращательная), тележка сориентирована вертикально по оси .
Для более детального учёта свойств транспортной тележки в динамики выражения векторов реакций трассы должны быть заменены на выражения с условиями сравнений в соответствии с допущениями, сформулированными в задании контрольной работы.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Выполнить 2 контрольные работы по Информационные технологии и сети в нефтегазовой отрасли. М-07765
Контрольная, Информационные технологии
Срок сдачи к 12 дек.
Архитектура и организация конфигурации памяти вычислительной системы
Лабораторная, Архитектура средств вычислительной техники
Срок сдачи к 12 дек.
Организации профилактики травматизма в спортивных секциях в общеобразовательной школе
Курсовая, профилактики травматизма, медицина
Срок сдачи к 5 дек.
краткая характеристика сбербанка анализ тарифов РКО
Отчет по практике, дистанционное банковское обслуживание
Срок сдачи к 5 дек.
Исследование методов получения случайных чисел с заданным законом распределения
Лабораторная, Моделирование, математика
Срок сдачи к 10 дек.
Проектирование заготовок, получаемых литьем в песчано-глинистые формы
Лабораторная, основы технологии машиностроения
Срок сдачи к 14 дек.
Вам необходимо выбрать модель медиастратегии
Другое, Медиапланирование, реклама, маркетинг
Срок сдачи к 7 дек.
Ответить на задания
Решение задач, Цифровизация процессов управления, информатика, программирование
Срок сдачи к 20 дек.
Написать реферат по Информационные технологии и сети в нефтегазовой отрасли. М-07764
Реферат, Информационные технологии
Срок сдачи к 11 дек.
Написать реферат по Информационные технологии и сети в нефтегазовой отрасли. М-07764
Реферат, Геология
Срок сдачи к 11 дек.
Разработка веб-информационной системы для автоматизации складских операций компании Hoff
Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления
Срок сдачи к 1 мар.
Нужно решить задание по информатике и математическому анализу (скрин...
Решение задач, Информатика
Срок сдачи к 5 дек.
Заполните форму и узнайте цену на индивидуальную работу!