Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Условия фильтрации для реактивных лестничных четырехполюсников

Тип Реферат
Предмет Физика
Просмотров
1140
Размер файла
62 б
Поделиться

Ознакомительный фрагмент работы:

Условия фильтрации для реактивных лестничных четырехполюсников

Академия

Кафедра Физики

Реферат

Условия фильтрации для реактивных лестничных четырехполюсников

Орёл 2009

Содержание

Назначение и классификация электрических фильтров

Свойства реактивных двухполюсников

Условия фильтрации для реактивных четырехполюсников

Заключение

Литература

Назначение и классификация электрических фильтров

Электрическим фильтром называют четырехполюсник, предназначенный для выделения из состава сложного электрического колебания частотных составляющих, расположенных в заданной полосе частот, и подавления тех составляющих, которые расположены в других, также заданных, полосах частот.

Указанные полосы называют соответственно полосой пропускания (ПП) и полосой задерживания (ПЗ) фильтра. По взаимному расположению ПП и ПЗ фильтры классифицируются следующим образом:

• фильтры нижних частот (ФНЧ)

• фильтры верхних частот(ФВЧ)

• полосовые фильтры (ПФ)

• режекторные фильтры (РФ)

Требования к АЧХ формулируются обычно в виде требований к частотной зависимости затухания (ослабления). При этом неравномерность затухания фильтра в его полосе пропускания не должна превышать некоторой величины Δа, а в пределах полосы задерживания фильтра затухание не должно принимать значений меньших, чем это допускается техническими требованиями. На рисунке 1 в качестве примера показаны требования к характеристике затухания. Здесь же изображена полоса перехода, в которой затухание не нормируется.

Рис.1

Пунктирной линией показан один из вариантов реального затухания ФНЧ, удовлетворяющего заданным требованиям.

Помимо требований к затуханию фильтра могут предъявляться и другие.

Классификация электрических фильтров может быть осуществлена также по элементной базе:

• LC фильтры;

• кварцевые и пьезокерамические фильтры;

• электромеханические и магнитострикционные фильтры;

• фильтры на поверхностных акустических волнах;

• RC и ARC -фильтры;

• цифровые фильтры и т.д.

По виду характеристики затухания (или АЧХ) различают фильтры с максимально-плоскими характеристиками, с равноволновыми характеристиками и фильтры со всплесками затухания.

Приведенная классификация не является исчерпывающей. Например, в технике многоканальной связи фильтры могут классифицировать по назначению: канальные, фильтры групп каналов, линейные фильтры и т.д.

Прежде чем перейти к анализу и синтезу электрических фильтров, рассмотрим свойства реактивных двухполюсников, которые являются составными элементами LC -фильтров".

Свойства реактивных двухполюсников

Реактивным двухполюсником (РД) называют электрическую цепь с двумя зажимами, состоящую из чисто реактивных элементов (индуктивностей и емкостей).

Такие двухполюсники не имеют потерь (активная составляющая сопротивления равна 0) и сопротивление их чисто реактивное. Свойства РД удобно оценивать по характеру изменения его реактивного сопротивления от частоты.

Важное значение в этом случае имеют некоторые частоты, при которых сопротивление РД обращается в нуль или стремится к бесконечно большой величине.

Частоты, при которых сопротивление РД обращается в нуль получили название нулей сопротивлений. Частоты, при которых сопротивление РД стремится к бесконечно большой величине получили название полюсов сопротивлений.

Условное расположение нулей (0) и полюсов (х) на оси частот принято называть характеристической строкой РД.

Рассмотрим характеристики простейших РД.

Сопротивление РД имеет: Сопротивление РД имеет:

нуль при ω=0 и полюс при ω=0 и

полюс при ω→ нуль при ω→

Более сложные РД получаются при последовательном или параллельном соединении простейших.


Так, соединяя последовательно L и С получим двухполюсник:

График частотной зависимости сопротивления РД и характеристическая строка имеют вид:

Таким образом рассматриваемый РД имеет два полюса сопротивления: при ω=0 и ω→ и один нуль: при ω=ω1

График частотной зависимости сопротивления и характеристическая строка двухполюсника, состоящего из параллельно соединенных элементов LC имеет вид

:

Как видно, РД имеет два нуля сопротивления: при ω=0 и ω= и один полюс: при

ω=ω1

Отметим, что на частоте резонанса (ω=ω1) происходит изменение характера реактивности двухполюсника с емкостного на индуктивный при последовательном соединении и с индуктивного на емкостной при параллельном соединении элементов.

У более сложных РД характер реактивности с ростом частоты может изменяться не один, а несколько раз.

Подобным же образом можно рассмотреть и более сложные РД и сформулировать общие правила анализа. Например, в 3-х элементном РД

Сначала наступает резонанс токов, обусловленный элементами L1 и C, а затем резонанс напряжений за счет элемента L2 и эквивалентной емкости контура L1C после его резонансной частоты:

Общие правила анализа РД:

1. Число нулей и полюсов сопротивления РД, расположенных при конечных значениях частоты, равно числу элементов L и С.

2. Нули и полюсы сопротивления РД чередуются, при этом всякий раз меняется характер реактивности.

3. Если в РД есть путь для постоянного тока, то характеристическая строка начинается с нуля, а в противном случае характеристическая строка начинается с полюса.

Зная общие правила анализа можно решить две задачи:

1. Для заданной схемы РД построить характеристическую строку и частотную зависимость его сопротивления (задача анализа).

2. Построить РД, удовлетворяющий заданным требованиям частотной зависимости и его сопротивления (задача синтеза).

Отметим, что одну и ту же характеристическую строку можно реализовать разными по структуре РД, которые в данном случае принято называть эквивалентными.

РД являются составными частями LC -фильтров, подавляющее большинство которых в аппаратуре связи имеет лестничную структуру.

Реактивный четырехполюсник называют лестничным, если образующие его РД поочередно включаются в продольные и поперечные ветви схемы.

Лестничные четырехполюсники образуют из Т- и П- образных четырехполюсников путем каскадного согласованного соединения их. Последние же получают путем соединения элементарных Г- образных полузвеньев Т- или П- образными сторонами, как показано на рисунках:

Г - образное Симметричное Симметричное полузвено Т - образное звено П - образное звено

Рассмотрим условия фильтрации для Г- образного полузвена.

Условия фильтрации для реактивных четырехполюсников

Определим условия, при которых реактивный четырехполюсник (четырехполюсник без потерь) будет электрическим фильтром, т.е. устройством, имеющим в некоторой области частот полосу пропускания, а в другой - полосу задерживания.

Условия фильтрации (УФ) найдем для четырехполюсника в виде элементарного Г- образного полузвена, а затем распространим их на каскадное соединение, т.е. на Т- и П- образные звенья.

Ранее было получено соотношение, связывающее характеристическое затухание с параметрами XX и КЗ.

(1)

Для Г- образного полузвена найдем:

С учетом этого можно записать выражение для характеристического затухания Г- образного полузвена:

(1)

Как видно из формулы, характеристическое затухание зависит от соотношения сопротивлений продольной и поперечной ветвей четырехполюсника. Условились характеристической ПП считать область частот, где характеристическое затухание равно нулю.

Следовательно, в области частот, в которой модуль выражения (1) равен 1, ln=0 и фильтр имеет ПП. При всех же других частотах ac0 т.е. расположена ПЗ.

Не трудно заметить, что модуль выражения (1) равен 1 в двух случаях:

а) при б) при

Если обозначить jA то

Таким образом, ПП реактивного четырехполюсника расположена на частотах, на которых справедливо неравенство

; ; ; ;

Видно, что данное неравенство имеет место при выполнении двух условий:

1. и должны иметь разные знаки;

2.

Фактически это и есть условие фильтрации (т.е. условие получения ПП) для реактивного Г- образного полузвена.

При составлении звеньев и более сложных фильтров из Г- образных полузвеньев, имеющих одинаковую частоту среза, затухание суммируется, следовательно условия фильтрации определяются Г- образным полузвеном.

Рассмотрим примеры применения УФ:

1) Данный четырехполюсник - ФНЧ.

Из графика видно, что условия фильтрации выполняются в полосе частот (0,ω0) поэтому данный четырехполюсник является ФНЧ.

Если L и С поменять местами, то нетрудно убедиться, что четырехполюсник будет ФВЧ.

2) Данный четырехполюсник - ПФ.

Определим условия фильтрации для мостового реактивного четырехполюсника.

Ранее мы установили, что ХПП лежит в области частот, где

В данном случае

и откуда

Полученное выражение будет отрицательным при противоположных знаках Za и Zb.

Таким образом ХПП для мостового симметричного четырехполюсника лежит в области частот, где Za и Zb имеют противоположные знаки.

Укажем, что мостовые звенья используются при построении фазовых корреляторов, кварцевых фильтров и других устройств.

Заключение

Отметить, что использование характеристических параметров для получения условий фильтрации дает возможность сравнительно легко определить тип фильтра и примерное расположение полос пропускания и задержания. Однако расчет фильтра по характеристическим параметрам является не оптимальным и не обладает должной гибкостью. Поэтому на практике все более широкое применение находят так называемые методы синтеза электрических фильтров по их рабочим параметрам, что и будет продемонстрировано в следующих лекциях.

Литература

1. Белецкий А.Ф. «Теория линейных электрических цепей » Москва 1986 с 368-383

2. Белецкий А.Ф. «Линейные устройства аппаратуры связи. Конспект лекций»

3. Бакалов В.П. «Теория электрических цепей» Москва «Радио и связь» 1998- с.368-390


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно