это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
Ознакомительный фрагмент работы:
Федеральное Агентство по образованию
ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)
Кафедра физики
ОТЧЕТ
Лабораторная работа по курсу "Общая физика"
ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТВЕРДЫХ ТЕЛ
Выполнил: студент группы
Проверил:
2009 г.
1. ЦЕЛЬ РАБОТЫ
Целью настоящей работы является изучение основных законов динамики поступательного и вращательного движений твердых тел, экспериментальное определение момента инерции блока и сравнение его с расчетным значением.
2. ОПИСАНИЕ УСТАНОВКИ И МЕТОДИКИ ЭКСПЕРИМЕНТА
Схема экспериментальной установки на основе машины Атвуда приведена на рис. 2.1.
На вертикальной стойке 1 крепится массивный блок 2, через который перекинута нить 3 с грузами 4 одинаковой массы, равной 80 г. В верхней части стойки расположен электромагнит, который может удерживать блок, не давая ему вращаться. На среднем кронштейне 5 закреплен фотодатчик 6. Риска на корпусе среднего кронштейна совпадает с оптической осью фотодатчика. Средний кронштейн имеет возможность свободного перемещения и фиксации на вертикальной стойке. На стойке укреплена миллиметровая линейка 7, по которой определяют начальное и конечное положение грузов. За начальное, принимают положение нижнего среза груза, за конечное - риску на корпусе среднего кронштейна.
Миллисекундомер 8 представляет собой прибор с цифровой индикацией времени. Опоры 9 используют для регулировки положения установки на лабораторном столе.
Принцип работы машины Атвуда заключается в следующем. Когда на концах нити висят грузы одинаковой массы, система находится в положении безразличного равновесия. Если же на один из грузов (обычно на правый) положить перегрузок, то система выйдет из равновесия, и грузы начнут двигаться с ускорением.
Машина Атвуда
1 – стойка;
2 – блок;
3 – нить;
4 – грузы;
5 – средний кронштейн;
6 – фотодатчик;
7 – линейка;
8 – миллисекундомер;
9 – регулировочная опора.
Рис. 2.1
3. ОСНОВНЫЕ РАСЧЕТНЫЕ ФОРМУЛЫ
Средние значение времени <t > и средние значение квадрата времени < t2> прохождения грузом с перегрузкомпутиh:
(3.1), (3.2)
Абсолютная суммарная погрешность измерения времени прохождения пути h:
(3.3)
Абсолютная случайная погрешность измерения времени прохождения пути h:
σсл(t) = t(a, n) ×S(t) ; (3.4)
где t(a, n) - коэффициент Стьюдента
стандартная абсолютная погрешность измерения времени:
(3.5)
где ti− время прохождения пути при i–ом измерении ( i =1. … , n);
n – число измерений;
< t > – среднее значение времени прохождения пути.
Абсолютная суммарная погрешность косвенного измерения квадрата времени прохождения путиh:
σ(t2) = 2 <t>σ(t) (3.6)
Исследуемая зависимость двух величин t2 и h является линейной, то есть удовлетворяет в общем виде формуле:
(3.7)
где k - константа, зависящая от параметров экспериментальной
установки:
(3.8)
где I− его момент инерции блока ;
R– радиус блока ;
M, m – масса груза и перегрузка ;
g – ускорение свободного падения.
4. РЕЗУЛЬТАТЫ РАБОТЫ И ИХ АНАЛИЗ.
Результаты измерений времени прохождения груза
(Таблица 4.1)
| Номер измерения | h1 =28,0 см | h2 =22,0 см | h3 =18,0 см | h4 =12,0 см | h5 =8,0 см |
| 1 | 3,617 | 3,281 | 3,092 | 2,348 | 1,986 |
| 2 | 3,73 | 3,23 | 2,891 | 2,346 | 1,921 |
| 3 | 3,797 | 3,414 | 3,133 | 2,521 | 2,099 |
| 4 | 3,597 | 3,414 | 3,061 | 2,323 | 2,058 |
| 5 | 3,837 | 3,238 | 2,882 | 2,412 | 2,096 |
| 3,716 | 3,315 | 3,012 | 2,39 | 2,032 | |
| 13,815 | 10,999 | 9,082 | 5,717 | 4,134 |
Из таблицы методического указания к лабораторному практикуму по физике А.Г. Риппа определим коэффициент Стьюдента.
t(a, n) = 2,1
Расчет погрешностей для построения графиков при коэффициенте
Стьюдента = 2,1
(Таблица 4.2)
| Номер серии опытов | Среднеквадра-тичное отклонение , с | Случайная погрешность , с | Абсолютная погрешность , с | Погрешность , с2 |
| 1 | 0,05 | 0,11 | 0,11 | 13,815 ± 0,8 |
| 2 | 0,04 | 0,08 | 0,08 | 10,999 ± 0,5 |
| 3 | 0,05 | 0,11 | 0,11 | 9,082 ± 0,7 |
| 4 | 0,04 | 0,08 | 0,08 | 5,717 ± 0,4 |
| 5 | 0,04 | 0,08 | 0,08 | 4,134 ± 0,3 |
Определяем абсолютную систематическую приборную погрешность измерения времени согласно методическому указанию к лабораторному практикуму по физике А.Г. Риппа
с.
Построение графиков.
Метод наименьших квадратов для построения прямых по экспериментальным точкам :
где обозначено:
k= 0,49 с2/м угловой коэффициент прямой
b= 0,06 с2 отрезок, отсекаемый прямой от оси OY
Искомая зависимость имеет вид: t2= 0,49∙h, с2(4.1)
Вычислим значения ординат прямой линии для двух контрольных точек при произвольных значениях hпо выражению 4.1:
h01 = 15 см, t201= 0,49×15= 7,35 c2 → точка A01
h02 = 29 см, t202= 0,49×29=14,21 c2 → точка A02
Рисунок 4.1. Зависимость квадрата времениt2от пройденного пути h
Погрешности косвенного измерения параметров прямой линии k и b методом наименьших квадратов определяются по следующим формулам:
где
∆(k) ≈ 0,01 с2/м
∆(b) = 0,17 с2
Используя выражение (3.7) для и учитывая, что г, г, R=75*10-3 и g=980,67 см/с2 вычисляется момент инерции блока.
I_ex = 16986 г∙см2
Абсолютная погрешности косвенного определения момента инерции блока Iэ в ходе эксперимента, по формуле:
∆(I_ex) = 552 г∙см2
Экспериментальное значение момента инерции блока:
I_ex= (16986 ± 552) г∙см2 = (1,7 ± 0,6) × 10 -4 кг∙м2
Используя геометрические параметры блока, с учетом плотности металла, из которого изготовлен блок (латунь, r = 8400 кг/м3), рассчитать его момент инерции.
Толщина блока в метрах d= 6∙10-3м
Объём сплошного диска V_CD= π∙d∙R2
V_CD= 1,06 см3
Масса сплошного диска m_CD= p∙ V_CD
m_CD = 890 г = 0,89 кг
Момент инерции сплошного диска I_CD= 1/2∙ m_CD∙r22
I_CD = 25031 г∙см2
Так как оси, проходящие через центры масс вырезанных дисков, не совпадают с осью вращения всего блока, то момент инерции I_can каждого диска находится по теореме Штейнера.
Радиус каждого выреза в метрах r2 = 30∙10-3 м
Объём каждого выреза V_can= π∙d∙ r22
V_can= 1.696∙10-5 см3
Масса каждого вырезанного диска m_can= p∙V_can
m_can=142 г = 0,142 кг
Момент инерции каждого вырезанного диска относительно его центра масс:
Ic=1/2∙m_can∙ r22 Ic = 639 г∙см2
r1=40∙10-3м расстояние от оси вращения блока до центра масс каждого
вырезанного диска в метрах
Момент инерции каждого вырезанного диска относительно оси вращения блока:
I_can=Ic+ m_can∙ r12 I_can = 639 г∙см2
Момент инерции цилиндрического отверстияIотв относительно оси, проходящей через центр масс блока, определяем по формуле:
= 2911 г∙см2
Момент инерции блока с тремя вырезами в виде малых дисков
I_an= I_CD-3∙ I_can I_an = 16298 г∙см2
Полученные экспериментальным и аналитическим способами моменты инерции можно сравнить, получив отличие между ними в процентах, при помощи нижеследующего соотношения:
5. ВЫВОДЫ
Используя экспериментальные данные, был построен график линеаризованной зависимости и рассчитаны коэффициенты соответствующего уравнения t2 = f(h)= 0,49∙hс2. Все точкив этой зависимостиукладываются на прямую в пределах их погрешностей.Это свидетельствует, что экспериментальная зависимость t2 = f(h) соответствует теоретической, т.е. экспериментально доказана справедливость основного уравнения динамики вращательного движения:
Значение собственного момента инерции,полученное в ходе эксперимента равно:
I_ex = 1,7 кг∙м2
Используя геометрические параметры блока, с учетом плотности металла, из которого изготовлен блок, рассчитан его момент инерции:
I_an = 1,6кг∙м2
Значение собственного момента инерции,полученное в ходе эксперимента, больше расчетного
Несовпадение экспериментального результата с расчетным можно объяснить тем, что не учитывался момент сил трения. Это и привело к завышенному значению собственного момента инерции блока в эксперименте.
6. ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ
1. Что такое момент сил и момент инерции?
Моментом силы относительно оси называется физическая величина, численно равная произведению величины составляющей силы, действующей в плоскости, перпендикулярной оси вращения, на плечо этой составляющей, т.е. на кратчайшее расстояниеr от оси вращения до линии действия
Момент силы относительно оси есть вектор, направленный вдоль этой оси и связан с направлением вращения правилом правого винта.
Момент инерциихарактеризует инерционные свойства вращающихся тел. Чем больше момент инерции тела, тем труднее изменить его угловую скорость. Момент инерции во вращательном движении аналогичен массе тела в поступательном движении. Момент инерции тела относительно некоторой оси зависит от распределения его массы относительно оси вращения.
Для элемента тела массой dm момент инерции dIвыражается соотношением: dI = r2dm,
где r – расстояние от элемента dm до оси вращения.
Момент инерции всего тела запишется в виде интеграла
где интегрирование осуществляется по всему телу.
2. Моменты каких сил действуют на блок?
Т1 и Т2 – силы натяжения нитей.
На блок действуют моменты сил натяжения нитей:
M1= T1R, M2= T2R .
Вращательное движение блока описывается уравнением:
Рис. 6.1
где ε - угловое ускорение блока, I- его момент инерции,
- сумма моментов сил, приложенных к блоку.
Согласно рис.6.1 вращательное движение блока описывается уравнением
3. Как рассчитать момент инерции блока?
Сформулировать теорему Штейнера.
Момент инерции блока рассчитывается как:
I = Iдиск – 3× Iотв
где Iдиск – момент инерции сплошного диска;
Iотв – момент инерции цилиндрического отверстия (“дырки”).
Момент инерции цилиндрического отверстияIотв относительно оси, проходящей через центр масс блока, определяем согласно теоремы Штейнера.
Теорема Штейнера :
Момент инерции Iотносительно произвольной оси, равен сумме момента инерции I0 относительно оси, параллельной данной и проходящей через центр масс тела и произведения массы тела m на квадрат расстояния l между осями:
I = I0 + ml2
4. Укажите возможные причины несовпадения экспериментальных результатов с расчетными.
Физические допущения, принятые при теоретическом анализе движения грузов в эксперименте; погрешности измерения величин; точность вычислений.
7. ПРИЛОЖЕНИЕ
К работе прилагается:
· регистрационный файл - phyLab2.reg
· файл журнала измерений - Ж.лаб2.txt
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Выполнить 2 контрольные работы по Информационные технологии и сети в нефтегазовой отрасли. М-07765
Контрольная, Информационные технологии
Срок сдачи к 12 дек.
Архитектура и организация конфигурации памяти вычислительной системы
Лабораторная, Архитектура средств вычислительной техники
Срок сдачи к 12 дек.
Организации профилактики травматизма в спортивных секциях в общеобразовательной школе
Курсовая, профилактики травматизма, медицина
Срок сдачи к 5 дек.
краткая характеристика сбербанка анализ тарифов РКО
Отчет по практике, дистанционное банковское обслуживание
Срок сдачи к 5 дек.
Исследование методов получения случайных чисел с заданным законом распределения
Лабораторная, Моделирование, математика
Срок сдачи к 10 дек.
Проектирование заготовок, получаемых литьем в песчано-глинистые формы
Лабораторная, основы технологии машиностроения
Срок сдачи к 14 дек.
Вам необходимо выбрать модель медиастратегии
Другое, Медиапланирование, реклама, маркетинг
Срок сдачи к 7 дек.
Ответить на задания
Решение задач, Цифровизация процессов управления, информатика, программирование
Срок сдачи к 20 дек.
Написать реферат по Информационные технологии и сети в нефтегазовой отрасли. М-07764
Реферат, Информационные технологии
Срок сдачи к 11 дек.
Написать реферат по Информационные технологии и сети в нефтегазовой отрасли. М-07764
Реферат, Геология
Срок сдачи к 11 дек.
Разработка веб-информационной системы для автоматизации складских операций компании Hoff
Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления
Срок сдачи к 1 мар.
Нужно решить задание по информатике и математическому анализу (скрин...
Решение задач, Информатика
Срок сдачи к 5 дек.
Заполните форму и узнайте цену на индивидуальную работу!