Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Магнітне поле рухомого заряду

Тип Реферат
Предмет Физика
Просмотров
664
Размер файла
96 б
Поделиться

Ознакомительный фрагмент работы:

Магнітне поле рухомого заряду

РЕФЕРАТ

на тему:”МАГНІТНЕ ПОЛЕ РУХОМОГО ЗАРЯДУ. ЯВИЩЕ ЕЛЕКТРОМАГНІТНОЇ ІНДУКЦІЇ


План

1. Магнітне поле рухомого заряду. Сила Лоренца. Рух заряджених частинок у магнітному полі

2. Ефект Холла. Магнітогазодинамічний генератор та його використання

3. Явище електромагнітної індукції

4.Самоіндукція. Індуктивність. Е.р.с. самоіндукції


1. Магнітне поле рухомого заряду. Сила Лоренца. Рух заряджених частинок у магнітному полі

Покажемо, що будь-яка заряджена частинка в процесі руху утворює у навколишньому просторі магнітне поле.

Скористаємось законом Біо – Савара – Лапласа для елементу струму:

, (12.1.1)

де  - магнітна проникність середовища (для не феромагнетиків наближено дорівнює одиниці); о – магнітна стала (); I – струм у провіднику; - елемент провідника; - відстань від елементу струму, до точки знаходження індукції магнітного поля; - кут між елементом провідника і радіусом-вектором .

Струм I у провіднику виразимо через густину струму j переріз S, а саме

. (12.1.2)

Густину струму виразимо із електронної теорії

, (12.1.3)

де n – концентрація вільних носіїв струму в провіднику; qo – елементарний заряд; - середня швидкість направленого руху носіїв струму в провіднику.

Підставимо (12.1.2) і (12.1.3) у (12.1.1), одержимо

. (12.1.4)

Напрям вектора збігається з напрямком , тому

.

Замінимо у співвідношенні (12.1.4) Sdl на dV і ndV на dN, одержимо

, (1 2.1.5)

де dB - індукція магнітного поля, яка створюється dN зарядами на відстані r від елемента струму, у якому рухаються ці заряди.

Магнітне поле одного рухомого заряду легко розрахувати, поділивши ліву і праву частини (12.1.5) на dN:

, (12.1.6)

де B0 - магнітне поле одного рухомого заряду (рис. 12.1); qo – величина цього заряду; - середня швидкість направленого руху заряду.

Рис. 12.1

На рис.12.1 індукція магнітного поля одного заряду є дотичною до силової лінії, яка має напрям обертання правого гвинта.

У векторній формі індукція магнітного поля рухомого заряду записується так

. (12.1.7)

Оскільки рухомий електричний заряд в навколишньому просторі створює магнітне поле, то з сторони зовнішнього поля на цей заряд має діяти магнітна сила. Цю силу називають силою Лоренца.

Величину сили Лоренца визначимо, скориставшись силою Ампера

, (12.1.8)

де - сила, з якою зовнішнє магнітне поле діє на елемент провідника із струмом .

Замінюємо струм I на густину струму в провіднику j і його значення з електронної теорії

,

де n – концентрація носіїв струму в провіднику; q0 – елементарний позитивний заряд; - середня швидкість направленого руху носіїв струму; S – переріз провідника.

У цьому випадку сила Ампера буде дорівнювати

, (12.1.9)

де - сила, з якою зовнішнє магнітне поле діє на магнітні поля всіх рухомих електричних зарядів, які є у виділеному елементі dl провідника.

Оцінимо число рухомих електричних зарядів у елементі струму Idl, яке в нашому випадку дорівнює

nSdl = dN.

Поділимо (12.1.9) на указане число електричних зарядів dN й одержимо

, (12.1.10)

де - сила Лоренца – сила з якою зовнішнє магнітне поле діє на магнітне поле окремого електричного заряду; qo - величина елементарного заряду; - середня швидкість направленого руху носіїв струму; B - індукція зовнішнього магнітного поля.

У векторній формі сила Лоренца записується так:

. (12.1.11)

Напрям вектора сили Лоренца визначається правилом лівої руки, аналогічно правилу лівої руки для напрямку сили Ампера.

При дії на рухому заряджену частинку електромагнітного поля сила Лоренца буде складатися із двох складників, електричної сили qE і магнітної сили , тобто

. (12.1.12)

Формула (12.1.12) є найбільш загальним виразом сили Лоренцо для малих швидкостей руху заряду.

Розглянемо рух зарядженої частинки в зовнішньому магнітному полі.

а) нехай заряджена частинка влітає перпендикулярно до напрямку силових ліній зовнішнього магнітного поля (рис.12.2).

Рис.12.2

Сила Лоренца в цьому випадку виконує роль доцентрової сили, під дією якої заряджена частинка буде рухатися по коловій траєкторії. Рівняння руху зарядженої частинки запишеться

, (12.1.13)

де ; m - маса частинки.

Визначимо радіус траєкторії обертання, а також період обертання, вважаючи, що

, і .

У цьому випадку радіус кривизни траєкторії й період обертання заряду будуть дорівнювати

; , (12.1.14)

де R - радіус кривизни траєкторії; m - маса частинки; - лінійна швидкість обертання; qo - елементарний позитивний заряд; B - індукція магнітного поля.

б) у випадку руху зарядженої частинки паралельного напрямку силових ліній зовнішнього магнітного поля (рис.12.3) будемо мати.

Рис. 12.3

Сила Лоренца в цьому випадку буде дорівнювати нулю, оскільки кут між векторами і дорівнює нулю. Зовнішнє магнітне поле не буде діяти на магнітне поле рухомої зарядженої частинки, якщо вона рухається паралельно силовим лініям зовнішнього магнітного поля.

в) якщо заряджена частинка попадає у зовнішнє магнітне поле під деяким кутом до напрямку силових ліній поля, то вона буде рухатись уздовж гвинтової траєкторії, як це показано на (рис.12.4).

Рис.12.4


З рисунка видно, що

. (12.1.15)

Рівняння руху по коловій траєкторії буде мати вигляд

, (12.1.16)

де ; R - радіус колової траєкторії.

Крок гвинтової лінії h, або шлях, який проходить заряджена частинка за один повний оберт у горизонтальному напрямі, можна розрахувати так:

, де . (12.1.17)

Період обертання визначають із рівняння руху (12.1.16), шляхом заміни лінійної швидкості на кутову, яку в свою чергу виражають через період обертання

.

2. Ефект Холла. Магнітогазодинамічний генератор та його використання

Розмістимо провідник зі струмом у перпендикулярне зовнішнє магнітне поле, як це показано на рис.12.5.


Рис. 12.5

Сила Лоренца зміщує рухомі електричні заряди, створюючи на гранях провідника різницю потенціалів, яку називають холлівською різницею потенціалів Ux.

Перерозподіл зарядів буде завершений, якщо сила Лоренца Fл стане дорівнювати електричній силі Fе, тобто

qB = qE = q, (12.2.1)

де b- ширина провідника; Ux– холлівська різниця потенціалів; q – елементарний позитивний заряд.

З (12.2.1) одержуємо

Ux = Bb.

Середню швидкість направленого руху зарядів у провіднику знайдемо із електронної теорії, в цьому випадку

, (12.2.3)

звідки

. (12.2.4)

Підставимо (12.2.4) в (12.2.2) і після відповідних скорочень будемо мати

, (12.2.5)

де - холлівська різниця потенціалів, яка створюється на гранях провідника із струмом у зовнішньому магнітному полі; I – величина струму у провіднику; d – товщина провідника; n – концентрації вільних носіїв; q – елементарний позитивний заряд.

Величину - називають сталою Холла.

Ефект Холла має широке практичне використання. За допомогою ефекту Холла легко визначають знак носіїв струму у провіднику або напівпровіднику. Ефект Холла дає можливість визначити концентрацію вільних носіїв, а також будувати датчики Холла, які використовуються для вимірювання індукції зовнішнього магнітного поля.

Для підвищення к.к.д. теплових електростанцій може бути використаний магнітогазодинамічний генератор, який працює на принципі ефекту Холла (рис.12.6).


Рис. 12.6

Перерозподіл поперечним магнітним полем електричних зарядів нагрітих відпрацьованих газів (утворюються в котлі при спалюванні палива), приводить до виникнення різниці потенціалів на пластинах конденсатора , яку можна практично використати для живлення струмом обладнання самої теплової станції. При цьому зниження температури нагрітих газових продуктів горіння від Т1 до Т2 дає можливість підвищити к.к.д. енергетичного блоку

.

Якщо на вході в магнітогазодинамічний генератор (показаний на рис.12.6) продукти горіння матимуть температуру Т1 = 3000К, а на виході - Т2 = 2500К, то к.к.д. блока станції може підвищитись майже на 15%, що суттєво покращує показники роботи самої теплової електростанції.

3. Явище електромагнітної індукції

У 1831 році Фарадей відкрив один із найбільш фундаментальних законів електродинаміки – явище електромагнітної індукції.

З’єднаємо соленоїд з гальванометром, як це показано на рис.12.7. Якщо постійний магніт вводити в котушку і виводити з котушки, то гальванометр покаже в колі наявність електричного струму. Напрям відхилення стрілки гальванометра змінюється при введенні і виведенні постійного магніту.

Рис. 12.7

Відхилення стрілки буде більшим, якщо швидкість введення або виведення магніту збільшувати. Цей же ефект можна спостерігати і у випадку руху не постійного магніту, а котушки.

Відкрите Фарадеєм фізичне явище носить назву явища електромагнітної індукції. Суть явища полягає у тому, що у замкнутому контурі при зміні в ньому потоку магнітної індукції, виникає електричний струм, який був названий індукційним.

Основні властивості індукційного струму такі:

- виникає завжди при зміні в контурі потоку магнітної індукції;

- сила індукційного струму не залежить від способу зміни потоку магнітної індукції, а визначається лише швидкістю зміни потоку.

Відкриття явища електромагнітної індукції підтвердило тісний зв’язок електричних і магнітних явищ та дало можливість побудувати генератори електричного струму з використанням у них змінного магнітного поля.

На основі виявленого фізичного явища був сформульований закон електромагнітної індукції, який називають законом Фарадея-Ленца

, (12.3.1)

де - зміна магнітного потоку (вимірюється у Вб); dt – час, за який відбувається ця зміна; і – електрорушійна сила індукції.

Електрорушійна сила індукції у контурі чисельно дорівнює швидкості зміни магнітного потоку крізь поверхню, обмежену цим контуром. Знак мінус характеризує правило Ленца. Суть цього правила в тому, що в замкнутому контурі виникає індукційний струм такого напрямку, що його власне магнітне поле протидіє будь-якій зміні зовнішнього магнітного поля.

Е.р.с. індукції вимірюється у вольтах

.

На явищі електромагнітної індукції працюють практично всі генератори електричного струму, які діють на різних електростанціях.

4. Самоіндукція. Індуктивність. Е.р.с. самоіндукції

При зміні сили струму в контурі буде змінюватись зчеплений з контуром магнітний потік. Це приводить до виникнення в цьому ж контурі електрорушійної сили, яку назвали е.р.с. самоіндукції. Іншими словами це явище пояснюється так – зменшення або збільшення струму в котушці приводить до утворення власної е.р.с. і, як наслідок, ще одного струму, який називається струмом самоіндукції. Магнітне поле струму самоіндукції перешкоджає зміні основного магнітного поля у відповідності з правилом Ленца.

Електрорушійна сила самоіндукції залежить від швидкості зміни струму в котушці та від кількості в ній витків

, (12.4.1)

де L - індуктивність котушки (L=0n2V), визначається числом витків на одиницю довжини n i об’ємом котушки V, а також наявністю феромагнітного осердя ; - швидкість зміни струму в котушці.

Знак мінус у формулі (12.4.1) показує, що при зменшенні струму у котушці струм самоіндукції за напрямком збігається з основним струмом і таким чином своїм магнітним полем перешкоджає його зменшенню. При наростанні основного струму у котушці струм самоіндукції миттєво змінює свій напрям на протилежний і створеним струмом самоіндукції магнітним полем протидіє наростанню основного магнітного поля.

Індуктивність котушки є її характеристикою, подібно до ємності конденсатора. Індуктивність вимірюється у генрі (Гн)

Гн.

З іншого боку, якщо в просторі, де перебуває контур зі струмом І, відсутні феромагнетики, то поле В, а це означає і повний магнітний потік Ф через контур, буде пропорційним силі струму, тобто

 = LI. (12.4.2)

Тому розмірність індуктивності дорівнює

=Гн.

Визначимо індуктивність соленоїда. Магнітний потік через довгу котушку з витками, яку називають соленоїдом, дорівнює

. (12.4.3)

З другого боку

 = LI. (12.4.4)

В обох випадках магнітний потік є повним, тобто зчепленим з усіма витками соленоїду. Прирівняємо праві сторони рівностей (12.4.3) і (12.4.4), одержимо

.

Звідки індуктивність соленоїда буде дорівнювати

,

де

і .


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно