Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Графоаналитический расчёт и исследование полупроводникового усилительного каскада

Тип Реферат
Предмет Коммуникации и связь
Просмотров
565
Размер файла
89 б
Поделиться

Ознакомительный фрагмент работы:

Графоаналитический расчёт и исследование полупроводникового усилительного каскада

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Тема:

"Графоаналитический расчет и исследование полупроводникового усилительного каскада"

Севастополь 2007 г.

1. Выбор параметров усилительного каскада

Выбор параметров усилительного каскада осуществлён согласно номеру варианта из приложения А, а также приложений В и Г, где определён тип транзистора (Uкэ доп=20 В, Iк доп=50 mА)

1. Тип транзистораМП-20Аp-n-p
2. ЭДС источника питанияЕк20 В
3. Сопротивление нагрузки0,68 кОм
4. Сопротивление эмиттерного резистора0,33 кОм
5. Амплитудное значение напряжения сигналаUвхm0,08 В
6. Частота сигналаf400 Гц

Рис. 1. Одиночный транзисторный каскад усиления

Рис. 2. Схема транзистора


Для усилительного каскада выбрана схема включения транзистора с общим эмиттером. Входной сигнал прикладывается к выводам эмиттера и базы, а источник питания коллектора включён между выводами эмиттера и коллектора. Таким образом, эмиттер является общим электродом для входной и выходной цепей. Входным током является малый по величине ток базы, выходным током – ток коллектора. В схеме с общим эмиттером можно получить коэффициент прямой передачи тока порядка нескольких десятков.

2. Построение входной и выходной статистических характеристик транзистора

На рисунке 3, выполненном на миллиметровой бумаге, построены входная и выходные характеристики транзистора МП-20А. Для схемы с общим эмиттером статической входной характеристикой является график зависимости тока базы Iб от напряжения Uбэ при постоянном значении Uкэ: Iб=f(Uбэ) при Uкэ=const. Выходные характеристики транзистора для схемы с общим эмиттером представляют собой зависимости тока коллектора от напряжения между коллектором и эмиттером при постоянном токе базы. Iк=φ(Uкэ) при Iб=const. Крутизна выходных характеристик на начальном участке от Uкэ=0 до |Uкэ| = |Uбэ| =0,08 В велика. На участке |Uкэ| > |Uбэ| крутизна характеристик уменьшается, и они идут почти параллельно оси абсцисс. Положение каждой из выходных характеристик зависит, главным образом, от величины тока базы.

Значения токов базы рассчитывается, начиная с самой нижней кривой, соответствующей I0б=0. Значение ∆ Iб=0,1 мА приведено в правом верхнем углу графиков выходных статических характеристик приложения В. Следовательно:

I0б0I0б=0 мА
Iб1= I0б+∆ Iб0+0,1Iб1=0,1 мА
Iб2= Iб1 +∆ Iб0,1+0,1Iб2=0,2 мА
Iб3= Iб2 +∆ Iб0,2+0,1Iб3=0,3 мА
Iб4= Iб3. +∆ Iб0,3+0,1Iб4=0,4 мА
Iб5= Iб4+∆ Iб0,4+0,1Iб5=0,5 мА

3. Построение нагрузочной прямой для режима постоянного тока в цепи коллектора

Нагрузочная прямая представляет собой траекторию движения рабочей точки транзистора при изменении уровня входного сигнала. В основе построения лежит решение уравнения динамического режима транзистора относительно тока коллектора. Сперва строим нагрузочную прямую для режима постоянного тока в цепи коллектора (прямая АВ на рис. 3.) При отсутствии входного сигнала, т.е. переменного напряжения Uвх заданной частоты, в коллекторной цепи будет протекать только постоянный ток коллектора Iк, и установится баланс напряжений, определяемый законом Кирхгофа:

Ек = URK+ Uкэ + URЭ= IKRK + UКЭ +IЭКЭ(1)

Отсюда напряжение, снимаемое с коллектора транзистора (выходное для него):

Uкэ = Ек – URK-URЭ = EK – IkRk-IэRэ (2)

Для упрощения рассуждений пренебрежем известным соотношением IЭ=IK+IБ> IK, и, поскольку ток базы IБ «Iк, примем IK«IЭ. Тогда выражение (2) примет вид:

UКЭ= Ек – URK-URЭ= Ек – Iк'Rк – IKRэ = Eк – Iк (Rк+Rэ) (3)


Выражение (3) называется уравнением динамического режима работы транзистора, показывающее, что напряжение на выходе транзистора UКЭ изменяется при любых изменениях тока коллектора IK.

Разрешив уравнение (3) относительно тока IK, получим:

(4)

Уравнение (4) позволяет построить нагрузочную прямую транзистора по постоянному току.

Приравнивая нулю значения UКЭ(транзистор открыт), получим:

Iк=Ек/(Rк+Rэ)=20/(680+330)=0,0198А=19,8 мА – точка А на оси ординат.

Приравнивая нулю значения Iк (транзистор закрыт), получаем:

Ек/(Rк+Rэ)=Uкэ/(Rк+Rэ)=> Ек=Uкэ=20 В-точка В на оси абсцисс.

Соединив точки, получаем искомую нагрузочную прямую АВ для режима постоянного тока в цепи коллектора (рисунок 3).

Примечание: эти точки – теоретические, поскольку транзистор в принципе не может быть открыт до уровня нулевого сопротивления перехода коллектор – эмиттер, которое мало, но RКЭ≠ 0,поэтому не может быть и UКЭ= IRRКЭ равным нулю. Это же можно сказать и о закрытом состоянии транзистора, для которого ток коллектора очень мал, но Iк≠ 0.

4. Построение динамической переходной характеристики для режима постоянного тока

Пользуясь графиками входной характеристики и нагрузочной прямой найдем геометрическое решение уравнения IK=f(IБ) в динамическом режиме, представляющее собой переходную динамическую характеристику

Переходная динамическая характеристикапостроена в левом верхнем квадранте графическим методом. Для этого ординаты точек пересечения нагрузочной прямой со статическими выходными характеристиками проецируются во второй квадрант, где пересекаются с проекциями соответствующих им токов базы. По полученным точкам строится динамическая переходная характеристики для режима постоянного тока Iк =f(IБ)-

При IБ = 0 ток коллектора очень мал, обусловлен движением только «тепловых» неосновных носителей через переход коллектор-база и представляет собой ток насыщения неосновных носителей коллекторного перехода IK=IКS (транзистор находится на границе режима отсечки). Переходная характеристика имеет протяженный линейный участок и лишь при приближении к режиму насыщения транзистора становится нелинейной. При дальнейшем увеличении тока базы IБ ток коллектора асимптотически стремится к своему наибольшему значению

=20/(680+330)=)=0,0198А=19,8 мА

5. Выбор положения начальной рабочей точки Р для режима постоянного тока в цепи коллектора

Положение начальной рабочей точки (точки покоя при UВХ=0)на всех характеристиках задается напряжением смещенияUБЭ и определяет способность транзистора влиять на форму сигнала в процессе усиления. Наименьшее искажение формы сигнала достигается в транзисторном каскаде, работающем в классе А.

Начальная рабочая точка Рдля такого усилительного каскада должна располагаться на участке входной характеристики, наиболее близком к линейному (в пределах двойной амплитуды входного сигнала), соответствующем наиболее линейному участку переходной характеристики. Только в этом случае между изменениями входного сигнала ΔUБЭ и выходного тока ΔIK(а, следовательно, и выходного напряжения ΔUКЭ) будет иметь место линейная зависимость.

После выбора положения начальной рабочей точки Рна входной и переходной динамической характеристиках она переносится на нагрузочную прямую. Именно в этой точке снимаем с графиков числовые значения параметров, характеризующих начальную рабочую точку (точку покоя при отсутствии входного сигнала): Uбэ0=0,15 В; Iб0=0,2 мА; Uкэ0=10 В; Iк0=10 мА.

6. Построение нагрузочной прямой для режима переменного тока

В режиме переменного тока на вход усилительного каскада подается входной синусоидальный сигнал заданной амплитуды (UВХ≠0) и частоты f.

Этому режиму работы соответствует другая нагрузочная прямая, при построении которой принимается во внимание шунтирование резистора температурной стабилизации Rэ=0,33кОм малым емкостным сопротивлением конденсатора Сэ на частоте входного сигнала. Для простоты будем считать, что на заданной частотеf=400Гцемкостное сопротивление конденсатора XC =0 и он полностью закорачивает резистор Rэ. Тогда эмиттер транзистора на частоте входного сигналаоказывается замкнутым на землю и баланс напряжений коллекторной цепи изменится по сравнению с выражением (3).

Поскольку эти изменения проявляются только на переменной составляющей сигнала, перепишем уравнение (1) с учетом наличия этой составляющей:


Отсюда

(5)

Сгруппируем слагаемые

(6)

И введём новые обозначения:

Ек’=Ек – IкRэ Iк= Iк0 + iк

Окончательно получим:

(7)

Уравнению (7) соответствует диаграмма, приведенная на рисунке 4.

Рисунок 4 К построению нагрузочной прямой для переменной составляющей при наличии элементов Rэ и Сэ


Разрешив уравнение (7) относительно тока Iк, получим:

(8)

Мы видим, что выражение (8) по форме совпадает с выражением (4), которое лежало в основе построения нагрузочной прямой для постоянного тока в цепи коллектора.

Поэтому, рассуждая аналогично, найдем значение максимального тока коллектора IK = Е΄к /RK(при Uкэ = 0) для переменной составляющей.

Е΄к = Ек – Iк0·Rэ = 20 – 0,01·330 => Е΄к =16,7 (В)

Iк= (Ек – Iк0·Rэ)/Rк

Iк= 16,7/680 ≈0,02456 =24,56·10ˉ³ А =>Iк =24,56 (мА)

Продолжаем построения на миллиметровой бумаге (рис. 3).Отложив на оси IKполученное новое значение максимального тока коллектора (точка С),через эту точку и выбранную ранее начальную рабочую точку (точку покоя Р),проводится нагрузочная прямая для режима переменного тока коллектора. Все дальнейшие рассуждения и построения, характеризующие работу усилительного каскада, выполняем с использованием этой нагрузочной прямой.

7. Построение динамической переходной характеристики для режима переменного тока

Динамическая переходная характеристика для режима переменного тока строится по точкам пересечения только что построенной нагрузочной прямой для переменного тока с выходными статическими характеристиками. Аналогично построению динамической переходной характеристики для режима постоянного тока в левом верхнем углу рисунка 3 находим точки пересечения линий, идущих от выходных характеристик и линий, проходящих через соответствующие им токи базы. На большей части линейного участка обе переходные характеристики совпадают или достаточно близки по расположению, однако, асимптоты (линии, к которым приближаются характеристики в верхней части), различаются.

8. Работа каскада в режиме усиления А

При отсутствии входного сигнала (Uвх=0) состояние транзистора определяется напряжением смещения │Uбэ│ = │UБЭ0│=│UR2 – URЭ│ =150 мВ = const,обеспечивающем работу каскада в классе А. Для работы каскада в режиме А на базу подаётся такое напряжение смещения, чтобы рабочая точка Р, определяющая исходное состояние схемы при отсутствии входного сигнала, располагалась примерно на середине наиболее прямолинейного участка входной характеристики. В этом режиме напряжение смещения Uбэ по абсолютной величине всегда больше амплитуды входного сигнала Uвхm (150 мВ>80 мВ), а ток покоя Iк0 всегда больше амплитуды переменной составляющей выходного тока (Iк0>Iкm). В режиме А при подаче на вход каскада синусоидального напряжения в выходной цепи будет протекать ток, изменяющийся тоже по синусоиде. Это обуславливает минимальные нелинейные искажения сигнала. Но, режим А самый неэкономичный, так как полезной является лишь мощность, выделяемая в выходной цепи за счёт переменной составляющей выходного тока, а потребляемая мощность определяется значительно большей величиной постоянной составляющей. Поэтому КПД усилительного каскада в режиме А – 20–30%. Обычно в этом режиме работают каскады предварительного усиления или маломощные выходные каскады.

9. Определение напряжений и токов транзисторного усилительного каскада графоаналитическим методом

На графиках всех характеристик, начиная с входной, приводятся временные диаграммы соответствующих сигналов (см. рисунок 3). Ось временипроведена перпендикулярно к оси отображаемого параметра на линии, проходящей через начальную рабочую точку. Ось изменений параметрапроведена параллельно оси параметра основного графика, если ось основного графика положительная, то направления осей совпадают, если отрицательная, то противоположно.

- заданный параметрUвх max=0,08 В= 80 мВ.

Диаграмма построена в левом нижнем квадранте. Строится график одного периода входного синусоидального сигнала. Масштаб диаграммы по оси UВХ совпадает с масштабом оси Uбэ основного графика. Положительная полуволна откладывается в соответствии с положительным направлением оси UВХ (на рисунке 3 оно противоположно отрицательному направлению оси Uбэ основного графика). Масштаб графика по оси времени произволен и сохранится при построении остальных временных диаграмм.

На этой временной диаграмме график изменения сигнала на входе усилительного каскада (перед разделительным конденсатором СP1) представлен ровно заштрихованной синусоидой.

При воздействии входного сигнала график изменения напряжения UБЭ представляет собой алгебраическую сумму постоянной составляющей UБЭ0 и переменной составляющей Uвх. Во время положительного полупериода Uвхрезультирующей является разность между постоянной составляющей – UБЭ0 и переменной составляющей + uвх (в нашем случае, когда ось UБЭ отрицательна). Во время отрицательного полупериода uвх эти две составляющие складываются.

График изменения напряжения – UБЭ(после разделительного конденсатора СР1) при воздействии входного сигнала + UВХпредставлен фигурой, заштрихованной по диагонали.

Все диаграммы, построенные далее являются производными от только что построенной диаграммы uвх =f(t).Они строятся в осях времени и соответствующего параметра, ось времени проходит через начальную рабочую точку (точку покоя Р). Точки максимального отклонения входного напряжения uвх (в обе стороны от оси времени) проецируются на входную статическую характеристику и определяют соответствующие им максимальные отклонения тока базы IБ относительно IБ0, (состояния при uвх =0).

На оси времени tоткладывается один период Т = 1/fизменения сигнала iБ. Масштаб оси диаграммы iБ совпадает с масштабом оси IБ основного графика.

Анализ данной диаграммы показывает, что при отсутствии входного сигнала (uвх=0) базовый ток постоянен во времени и равен IБ = IБ0 = 0,2 мА = const.Под действием входного сигнала базовый ток IБизменяется во времени. Изменение переменной составляющей тока базы под действием входного сигнала представлено на временной диаграмме IБ = f(t) ровно заштрихованной фигурой. Ввиду некоторой нелинейности выбранного участка входной характеристики амплитудные значения изменения переменной составляющей тока базы IБm1≠IБm2 Суммарное изменение тока IБ = IБ0 ± iБчерез базовый электрод под воздействием входного сигнала uвх представлено фигурой, заштрихованной по диагонали.

Рассуждая аналогично, строим временные диаграммы iK = f(t), uВЫХ=f(t). Изменение переменной составляющей – ровно заштрихованные фигуры, суммарное изменений тока коллектора и выходного сигнала – фигуры, заштрихованные по диагонали.

На графике uВЫХ=f(t) видно, что каскад усиления на транзисторе в общим эмиттером изменяет (инвертирует) фазу входного сигнала на противоположную т.е. напряжение сигнала на входе и на выходе каскада сдвинуты между собой по фазе на 180 градусов.

Снимаем с графиков амплитудные значения переменных составляющих токов и напряжений сигналов. При неравенстве амплитудных значений переменных составляющих в положительном и отрицательном полупериодах выбираем большую из них.

UВХmIБmIKmUВЫХm
0,08 В0,18 мА7 мА4,3 В

10. Расчет значения сопротивлений резисторов R1и R2 входного делителя напряжения

РезисторыR1, R2 представляют собой делитель напряжения. Мы имеем схему с фиксированным напряжением смещения на базе. Резисторы R1 и R2 подключены параллельно источнику питания. Фиксированное напряжение снимается с резистора R2. Пренебрегая малым внутренним сопротивлением источника питания можно считать, что R1 и R2 включены параллельно друг другу. При параллельном включении их общее сопротивление будет меньше меньшего из них и определяется именно этим сопротивлением. В нашем случае это резистор R2.

Для того чтобы напряжение было «фиксированным» и не зависело от внешних факторов (изменения температуры, изменения свойств транзистора из-за старения), влияющих на электрическую цепь, включенную параллельно резистору R2,(куда входит и эмиттерно-базовый переход транзистора), R этой цепи должно быть значительно больше сопротивления R2.

Значит ток в цепи R2(а значит и в цепи всего делителя напряжения R1, R2) будет больше, чем в цепи тока базы транзистора.

Iделителя обычно Iд=(5…7) IБо. (9)

Iд=6·IБо =6·0,0002=0,0012 А =1,2 мА

Тогда, принимая во внимание, что по закону Кирхгофа

UR2=UБЭ0+URЭ0 = IДR2, (10)

UБЭ0 – снимается с графика UБЭ0 =0,15 В

URЭ0=IK0RЭ =0,01·330 = 3,3 В

находим

(11)

R2=(0,15+3,3) / 0,0012 = 3,45/0,0012 = 2875 Ом

R2=2,875 кОм.

Учитывая, что через резистор R1протекают и ток делителя Iд и ток базы IБ0, запишем для него выражение:

Но

Тогда

(12)

R1=(16,7 -3,45)/(0,0012+0,0002) = 13,25/0,0014 ≈ 9464,3 Ом

R1 = 9,464 кОм

11.Расчет значений емкостей разделительных конденсаторов

Разделительный конденсатор Cp1 отделяет переменную составляющую от постоянной (Ср2 аналогичен для следующего каскада усиления) и является верхним плечомделителя входного переменногонапряжения UВХ. Нижним плечом этого делителя является входное сопротивление каскада RВХ, которое для переменной составляющей входного сигнала определяется параллельно включенными резисторами R2 и R1(верхняя точка R1замыкается на «землю» через малое сопротивление источника питания Eк) и сопротивлением транзистора. Сопротивление резистора RЭ во внимание не принимают, т. к. на частоте сигнала оно шунтировано малым емкостным сопротивлением конденсатора Сэ.

Обобщенное уравнение делителя напряжения:

(1З)

Мы видим, что именно нижнее плечо (по отношению к верхнему) определяет результат деления. Нужно стремиться уменьшить сопротивление верхнего плеча (из (13) видно, что при RВЕРХ = 0 выходное напряжение делителя наибольшее (Uвьгх = UВХ). Следовательно, емкостное сопротивление разделительного конденсатора CР1 должно быть меньше сопротивления нижнего плеча.

Обычно величины емкостей разделительных конденсаторов Cр1 и Cр2на входе и выходе усилительного каскада принимаются равными CР1=CР2= СР. Их значения определяются из соотношения:

XCp≤0, lR2,(14)


XCp≤0, l·2875; XCp≤ 287,5 Ом

Где - емкостное сопротивление разделительного конденсатора, Ом (при f – Гц и Ср – Ф).

1/(2πf·Cр) = 287,5

1/(2·3,141593·400·Cр)=287,5; 1/(2513,2744·Cр) = 287,5; 2513,2744·Cр = 0,003478; Ср=0,00000138 Ф=1,38 мкФ.

12. Расчет значения емкости конденсатора СЭ

Шунтирующий конденсатор Сэ предназначен для устранения (уменьшения) отрицательной обратной связи, возникающей на резисторе R3при наличии входного переменного напряжения UВХ – Эта обратная связь уменьшает коэффициент усиления каскада на частоте входного сигналаи может быть нежелательна. Именно, чтобы отвести от резистора Rэпеременную составляющую тока коллектора (считаем iЭ ≈ iK) и ставится этот конденсатор.

Очевидно, что чем меньше емкостное сопротивление этого конденсатора, тем лучше по нему отводится от Rэпеременная составляющая тока коллектора. Исходя из этих соображений, обычно принимают

XCЭ≤ 0,1RЭ, (15)

Xcэ≤ 0,1·330

Xcэ=33 Ом

где - емкостное сопротивление шунтирующего конденсатора, Ом (при f – Гц и Сэ – Ф).

33=1/(2·3,141593·400·Сэ); 33=1/(2513,2744·Сэ); 2513,2744·Сэ=1/33; Сэ=0,0303/2513,2744; Сэ=0,0000121 Ф = 12,1 мкФ.

13.Выбор номинальных значений сопротивлений, рассчитанных резисторов и емкостей конденсаторов

Полученные в результате расчетов значения R и C нормализуем в соответствии с таблицей номиналов, полагая применение в схеме элементов II группы с точностью ± 10%.

R1 = 9,464 кОм9464 ОмR1=10·10^3 ОмR1=10 кОм
R2 = 2,875 кОм2875 ОмR2=2·10^3 ОмR2=2 кОм
Ср=1,38мкФСр=0,00000138 ФСр=1·10^-6 ФСр=1 мкФ
Сэ=12,1 мкФСэ=0,0000121 ФСэ=12·10^-6 ФСэ=12 мкФ

R, C= a 10±n

Класс точностиКоэффициент а
II ± 10%10-12-15-18-22-27-33-39-47-56-68-82-

14.Расчет коэффициента полезного действия каскада

Коэффициент полезного действия каскада определяется из

(16)

где - полезная мощность, передаваемая усилительным каскадом в нагрузку (представляет собой площадь треугольника, см. рисунок 3 и 5);

Ркm=(1/2)·(4,3·0,007)=0,01505 Вт = 15,05 mВт.

- затраченная (бесполезно) мощность в режиме Uвх= 0 (представляет собой площадь прямоугольника под точкой А).

Рк0=10·0,01=0,1 Вт

Соблюдается условие РK0< PK ДОП, гдеPK ДОП = 150mВт=0,15 Вт – допустимая мощность коллекторного перехода, взятая из приложения Г.

– мощность, потребляемая усилительным каскадом от источника питания;

Рк=0,01505 Вт + 0,1 Вт=0,11505 Вт.

Рисунок 5 – Графическое пояснение к определению к.п.д. усилительного каскада

η=(0,01505 / 0,11505)·100%=13,1%.

15. Расчет коэффициентов усиления каскада

Коэффициенты усиления каскада по току, напряжению и мощности вычисляются как отношения амплитуд выходных значений к входным:

; ; (17)


Величины UВХm; UВЫХm; IKm; IБm. получены при анализе работы усилительного каскада графоаналитическим методом (рисунок 3).

Ku = 4.3/0.08 =53.75 Ki = 0.007/0.00018 = 38.89 Kp =53.75·38.89 = 2090.34.

Заключение

В данной работе был произведён графоаналитический расчёт одиночного транзисторного каскада усиления. Усилитель построен на основе схемы подключения транзистора с общим эмиттером. Эта схема даёт наибольшее усиление по мощности. Коэффициент прямой передачи или усиление по току соответствует нескольким десяткам. Полученное нами значениеKi = 38.89 соответствует заданным требованиям. К достоинствам схемы, помимо большого коэффициента усиления по току, относится возможность питания схемы от одного источника (так как на базу и на коллектор подаётся напряжение одного знака). Резисторы R1 и R2 составляют делитель напряжения. Сопротивление делителя должно быть большим (несколько килоОм, нами получено около 4 кОм), иначе входное сопротивление очень мало. Изменение тока в цепях эмиттера и коллектора транзистора незначительно влияют на величину напряжения смещения, следовательно стабильная работа. Для расчёта были использованы графики статических характеристик транзистора: входная и выходная. Построены динамические характеристики. Нелинейные искажения представляют собой изменение формы кривой усиливаемых колебаний, вызванное нелинейными свойствами цепи, через которую эти колебания проходят. Основная причина – нелинейность входной характеристики транзистора. Когда на вход усилителя подан сигнал синусоидальной формы, то попадая на нелинейный участок входной характеристики транзистора, этот сигнал вызывает изменение входного тока, форма которого отличается от синусоидальной и, следовательно, выходной ток и выходное напряжение изменяют свою форму по сравнению с входным сигналом. Разделительный конденсатор С1 служит для предотвращения протекания постоянной составляющей тока базы через источник входного сигнала. С помощью С2 на выход каскада подаётся переменная составляющая Uкэ, изменяющаяся по закону входного сигнала, но значительно превышающая его по величине. Rэ применяется для термостабилизации. Он шунтирован Сэ достаточно большой ёмкости, порядка десятков микроФарад (нами получено 12,1mлФ). Это делается для отвода переменной составляющей тока эмиттера от резистора Rэ.

Коэффициент полезного действия каскада η=13,1%

Коэффициенты усиления по напряжению, току и мощности: Ku = 4.3/0.08 =53.75, Ki = 0.007/0.00018 = 38.89, Kp =53.75·38.89 = 2090.34.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно