Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Консолидирование задолженности

Тип Реферат
Предмет Бухгалтерский учет и аудит
Просмотров
1137
Размер файла
40 б
Поделиться

Ознакомительный фрагмент работы:

Консолидирование задолженности

Тюменский Государственный Нефтегазовый Университет

Контрольная работа по дисциплине:

«Финансовая математика»

Выполнил ст. гр. МО1с

Калачев С.А.

Тюмень 2002

Содержание

1. Простые и сложные проценты. Сущность и применение…………………..3

2. Консолидирование задолженности…………………………………………..9

Список литературы………………………………………………………………15
1. Простые и сложные проценты. Сущность и применение.

Предоставляя свои денежные средства в долг, их владелец получает определенный доход в виде процентов, начисляемых по некоторому алгоритму в течение определенного промежутка вре­мени. Поскольку стандартным временным интервалом в финан­совых операциях является 1 год, наиболее распространен вари­ант, когда процентная ставка устанавливается в виде годовой ставки, подразумевающей однократное начисление процентов по истечении года после получения ссуды. Известны две основные схемы дискретного начисления:

схема простых процентов;

схема сложных процентов.

Схема простых процентов предполагает неизменность базы, с которой происходит начисление. Пусть исходный инвестируемый капитал равен Р; требуемая доходность — г (в долях единицы). Считается, что инвестиция сделана на условиях простого процен­та, если инвестированный капитал ежегодно увеличивается на величину Р • г. Таким образом, размер инвестированного капита­ла через n лет (Rn) будет равен:

Rn = Р + Р • г + …+ Р • г = P • (1 + n • r ). (1)

Считается, что инвестиция сделана на условиях сложного процента, если очередной годовой доход исчисляется не с исход­ной величины инвестированного капитала, а с общей суммы, включающей также и ранее начисленные, и невостребованные инвестором проценты. В этом случае происходит капитализация процентов по мере их начисления, т.е. база, с которой начисляют­ся проценты, все время возрастает. Следовательно, размер ин­вестированного капитала будет равен:

к концу первого года: F1 = Р + Р • г = Р • (1 + г);

к концу второго года: F2 = F1+ F1 • г = F1• (1 + г) == Р • (1 + г);

к концу n-го года: Fn == Р • (1 + г) .

При проведении финансовых операций чрезвычайно важно знать как соотносятся величины Rn и Fn. Все зависит от величины n. С помощью метода математической индукции легко показать, что при n > 1, (1 + г)" > 1 + +п • г. Итак,

Rn > Fn, при 0 < n <1;

Fn > Rn, при n >1.

Взаимосвязь Fn и Rn можно представить в виде графика (рис. 1).

Таким образом, в случае ежегодного начисления процентов для лица, предоставляющего кредит:

более выгодной является схема простых процентов, если срок ссуды менее одного года, (проценты начисляются однократно в конце периода);

более выгодной является схема сложных процентов, если срок ссуды превышает один год (проценты начисляются ежегодно);

обе схемы дают одинаковые результаты при продолжитель­ности периода 1 год и однократном начислении процентов.

Рис. 1. Простая и сложная схемы наращения капитала

Использование в расчетах сложного процента в случае много­кратного его начисления более логично, поскольку в этом случае капитал, генерирующий доходы, постоянно возрастает. При применении простого процента доходы по мере их начисления целесообразно снимать для потребления или использования в других инвестиционных проектах или текущей деятельности.

Формула сложных процентов является одной из базовых формул в финансовых вычислениях, поэтому для удобства пользования значения множителя FMl (r, n), называемого муль­типлицирующим множителем и обеспечивающего наращение стоимости, табулированы для различных значений г и n. Тогда формула алгоритма наращения по схеме сложных процентов переписывается следующим образом:

Fn = P • FMl (r, n), (2)

где FMl (r, n) = (1 + г) — мультиплицирующий множитель.

Экономический смысл множителя FMl (r, n) состоит в следу­ющем: он показывает, чему будет равна одна денежная единица (один рубль, один доллар, одна иена и т.п.) через n периодов при заданной процентной ставке г.

В практических расчетах для наглядной и быстрой оценки эффективности предлагаемой ставки наращения при реализации схемы сложных процентов пользуются приблизительным расче­том времени, необходимого для удвоения инвестированной сум­мы, известным как «правило 72-х». Это правило заключается в следующем: если г — процентная ставка, выраженная в процен­тах, то k = 72/r представляет собой число периодов, за которое исходная сумма приблизительно удвоится. Это правило хорошо срабатывает для небольших значений г (до 20%). Так, если годовая ставка г = 12%, то k = 6 годам. Речь идет о периодах начисления процентов и соответствующей данному периоду ставке, а именно, если базовым периодом, т.е. периодом наращения, является квартал, то в расчете должна использоваться квартальная ставка.

Схема простых процентов используется в практике банковс­ких расчетов при начислении процентов по краткосрочным ссу­дам со сроком погашения до одного года. В этом случае в качестве показателя n берется величина, характеризующая удель­ный вес длины подпериода (дни, месяц, квартал, полугодие) в общем периоде (год). Длина различных временных интервалов в расчетах может округляться: месяц — 30 дней; квартал — 90 дней; полугодие — 180 дней; год — 360 (или 365) дней.

На практике многие финансовые операции выполняются в рамках одного года, при этом могут использоваться различные схемы и методы начисления процентов. В частности, большое распространение имеют краткосрочные ссуды, т.е. ссуды, предо­ставляемые на срок до одного года с однократным начислением процентов. В этом случае для кредитора, диктующего чаще всего условия финансового контракта, более выгодна схема простых процентов, при этом в расчетах ис­пользуют промежуточную процентную ставку, которая равна доле годовой ставки, пропорциональной доле временного ин­тервала в году.

F = Р • (1 + F •r ), или F = Р • (1 + t/T• r), (3)

где г — годовая процентная ставка в долях единицы;

t — продолжительность финансовой операции в днях;

Т — количество дней в году;

f — относительная длина периода до погашения ссуды.

При определении продолжительности финансовой операции принято день выдачи и день погашения ссуды считать за один день. В зависимости от того, чему берется равной продолжитель­ность года (квартала, месяца), размер промежуточной процент­ной ставки может быть различным. Возможны два варианта:

точный процент, определяемый исходя из точного числа дней в году (365 или 366), в квартале (от 89 до 92), в месяце (от 28 до 31);

обыкновенный процент, определяемый исходя из приближен­ного числа дней в году, квартале и месяце (соответственно 360, 90, 30).

При определении продолжительности периода, на который выдана ссуда, также возможны два варианта:

принимается в расчет точное число дней ссуды (расчет ведется по дням);

принимается в расчет приблизительное число дней ссуды (ис­ходя из продолжительности месяца в 30 дней). Для упрощения процедуры расчета точного числа дней пользуются специальными таблицами (одна для обычного года, вторая для високосного), в которых все дни в году последо­вательно пронумерованы. Продолжительность финансовой опе­рации определяется вычитанием номера первого дня из номера последнего дня.

В случае, когда в расчетах используется точный процент, берется и точная величина продолжительности финансовой опе­рации; при использовании обыкновенного процента может при­меняться как точное, так и приближенное число дней ссуды. Таким образом, расчет может выполняться одним из трех спо­собов:

обыкновенный процент с точным числом дней (применяется в Бельгии, Франции);

обыкновенный процент с приближенным числом дней (ФРГ, Дания, Швеция);

точный процент с точным числом дней (Великобритания, США).

В практическом смысле эффект от выбора того или иного способа зависит от значительности суммы, фигурирующей в процессе финансовой операции.

Другой весьма распространенной операцией краткосрочного характера, для оценки которой используются рассмотренные формулы, является операция по учету векселей банком. В этом случае пользуются дисконтной ставкой. Одна из причин состоит в том, что векселя могут оформляться по-разному, однако чаще всего банку приходится иметь дело с суммой к погашению, т.е. с величиной FV. Схема действий в этом случае может быть следу­ющей. Владелец векселя на сумму FV предъявляет вексель банку, который соглашается его учесть, т.е. купить, удерживая в свою пользу часть вексельной суммы, которая нередко также называ­ется дисконтом. В этом случае банк предлагает владельцу сумму (PV), исчисляемую исходя из объявленной банком ставки дискон­тирования (d). Очевидно, что чем выше значение дисконтной ставки, тем большую сумму удерживает банк в свою пользу. Расчет предоставляемой банком суммы ведется по формуле:

PV == FV • (1 —f • d ), или PV = FV (1 —t/T • d), (4)


где f - относительная длина периода до погашения ссуды (опера­ция имеет смысл, когда число в скобках не отрицательно).

2. Консолидирование задолженности.

В практике нередко возникают случаи, когда необходимо заме­нить одно обязательство другим, например с более отдаленным сро­ком платежа, досрочно погасить задолженность, объединить не­сколько платежей в один (консолидировать платежи) и т.п. В таких ситуациях неизбежно возникает вопрос о принципе, на котором должно базироваться изменение контракта. Таким общепринятым принципом является финансовая эквивалентность обязательств ко­торая предполагает неизменность финансовых отношений сторон до и после изменения контракта.

Эквивалентными считаются такие платежи, которые, будучи "приведены" к одному моменту времени, оказываются равными. Приведение осуществляется путем дисконтирования к более ранней дате или, наоборот, наращения суммы платежа (ес­ли эта дата относится к будущему). Если при изменении условий принцип финансовой эквивалентности не соблюдается, то одна из участвующих сторон терпит ущерб, размер которого можно зара­нее определить. По существу, принцип эквивалентности следует из формул наращения и дисконтирования, связывающих величи­ны Р (первоначальная сумма долга) и S (наращенная сумма, или сумма в конце срока), Сумма Р эквивалентна S при принятой процентной став­ке и методе ее начисления. Две суммы денег S1 и S2, выплачивае­мые в разные моменты времени, считаются эквивалентными, если их современные (или наращенные) величины, рассчитанные по одной и той же процентной ставке и на один момент времени, одинаковы. Замена S1 на S2 в этих условиях формально не изме­няет отношения сторон.

Сравнение платежей предполагает использование некоторой процентной ставки, и, следовательно, результат зависит от выбора ее величины. Однако, что практически весьма важно, такая зависи­мость не столь жестка, как это может показаться на первый взгляд. Допустим, что сравниваются два платежа S1 и S2 сроками n1 и n2 , измеряемыми от одного момента времени, причем S1 < S2 и n1 < n2. Их современные стоимости Р1 и Р2 в зависимости от размера про­центной ставки показаны на рис. 3.1.

С ростом i величина Р уменьшается, причем при i = i0 наблюда­ется равенство Р1 = Р2. Для любой ставки i < i0 Р1 < Р2. В свою оче­редь, при i > i0 Р1 > Р2. . Таким образом, результат сравнения зависит от критического (барьерного) размера ставки, равного i0. Определим величину этой ставки. На основе равенства современных стоимо­стей сравниваемых платежей

S1 S2

1 + n1 i0 1 + n2 i0


Находим

(1)


рис. 1.


Из формулы (1) следует, что чем больше различие в сроках, тем больше величина i0 при всех прочих равных условиях. Рост отноше­ния S1/S2 оказывает противоположное влияние.

Если дисконтирование производится по сложной ставке, то кри­тическую ставку найдем из равенства

S1 (1+ i0) = S2 (1+ i0)

Получим:

(2)

Принцип эквивалентности приме­няется при различных изменениях условий выплат денежных сумм.

Общий метод решения подобного рода задач заключается в разра­ботке так называемого уравнения эквивалентности, в котором сумма заменяемых платежей, приведенных к какому-ли­бо моменту времени, приравнивается к сумме платежей по новому обязательству, приведенных к той же дате. Для краткосрочных обя­зательств приведение осуществляется обычно на основе простых ставок, для средне- и долгосрочных — с помощью сложных ставок. Заметим, что в простых случаях часто можно обойтись без специаль­ной разработки и решения уравнения эквивалентности.

Одним из распространенных случаев изменения условия являет­ся консолидация (объединение) платежей. Пусть платежи S1, S2, …, Sm со сроками n1, n2, …, nm заменяются одним в сумме So и сроком n0. В этом случае возможны две постановки задачи: если задается срок n0, то находится сумма So, и наоборот, если задана сумма консоли­дированного платежа So, то определяется срок n0.

При определении суммы консолидированного платежа уравнение эквивалентности имеет простой вид. В общем случае, когда n1< n2, <…<. nm , причем n1< n0 < nm , искомую величи­ну находим как сумму наращенных и дисконтированных платежей. При применении простых процентных ставок получим:

(3)

где Sj размеры объединяемых платежей со сроками ni< n0;

Sk - размеры платежей со сроками n k > n0;

В частном случае, когда n0 > nm

(4)

При объединении обязательств можно применить и учетные ставки. В этом случае при условии, что все сроки выплат пролон­гируются, т.е. n0 > nj , находим сумму наращенных по учетной став­ке платежей:

So = å Sj (1- tj d )

В общем случае имеем

So = å Sj (1- tj d ) + å Sk (1- tk d )

Здесь tj, tk имеют тот же смысл, что и выше.

Консолидацию платежей можно осуществить и на основе слож­ных ставок. Вместо формулы (3) получим для общего случая

( n1 < nо< nm )

So = å Sj (1+ t ) + å Sk (1 + i ) (5)

Если при объедине­нии платежей задана величина консолидированного платежа So, то возникает проблема определения его срока n0. В этом случае урав­нение эквивалентности удобно представить в виде равенства совре­менных стоимостей соответствующих платежей.

При применении простой ставки это равенство имеет вид:

So (1+ n0i ) = å Sj (1+ nj i )

Отсюда

(6)

Очевидно, что решение может быть получено при условии, что Sо > å Sj (1+ nj i )

Иначе говоря, размер заменяющего платежа должен быть больше суммы современных стоимостей заменяемых пла­тежей. Искомый срок пропорционален величи­не консолидированного платежа.

При консолидации платежей на основе сложных про­центных ставок уравнение эквивалентности будет следующим:

So (1 + i) = å Sj (1+ i )

Для упрощения дальнейшей записи можно принять:

Q = å Sj (1+ i )

Тогда

(7)

Решение существует, если соблюдено условие So > Q. Для частного случая, когда Sо = å Sj при определении срока кон­солидирующего платежа вместо формулы (7) иногда применяют средний взвешенный срок:

(8)

Привлекательность этой формулы, помимо ее простоты, состоит в том, что она не требует задания уровня процентной ставки. Она дает приближенный результат, который больше точного. Чем выше ставка i, тем больше погрешность реше­ния по формуле (8).


Список литературы

1. Ковалев В.В. Финансовый анализ: Управление капиталом. Выбор инвестиций. Анализ отчетности. – М.: Финансы и статистика, 1997. –512 с.

2. Малыхин В.И. Финансовая математика.: Учеб. пос. для вузов. – М.: ЮНИТИ – ДАНА,1999.- 247 с.

3. Четыркин Е.М. Методы финансовых и коммерческих расчетов. – 2-е изд., испр. и доп. – М.: «Дело Лтд», 1995. – 320 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
ИжГТУ имени М.Т.Калашникова
Сделала все очень грамотно и быстро,автора советую!!!!Умничка😊..Спасибо огромное.
star star star star star
РГСУ
Самый придирчивый преподаватель за эту работу поставил 40 из 40. Спасибо большое!!
star star star star star
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачи по математике

Решение задач, Математика

Срок сдачи к 14 дек.

только что

Чертеж в компасе

Чертеж, Инженерная графика

Срок сдачи к 5 дек.

только что

Выполнить курсовой по Транспортной логистике. С-07082

Курсовая, Транспортная логистика

Срок сдачи к 14 дек.

1 минуту назад

Сократить документ в 3 раза

Другое, Информатика и программирование

Срок сдачи к 7 дек.

2 минуты назад

Сделать задание

Доклад, Стратегическое планирование

Срок сдачи к 11 дек.

2 минуты назад

Понятия и виды пенсии в РФ

Диплом, -

Срок сдачи к 20 янв.

3 минуты назад

Сделать презентацию

Презентация, ОМЗ

Срок сдачи к 12 дек.

3 минуты назад

Некоторые вопросы к экзамену

Ответы на билеты, Школа Здоровья

Срок сдачи к 8 дек.

5 минут назад

Приложения AVA для людей с наступающим слуха

Доклад, ИКТ

Срок сдачи к 7 дек.

5 минут назад

Роль волонтеров в мероприятиях туристской направленности

Курсовая, Координация работы служб туризма и гостеприимства

Срок сдачи к 13 дек.

5 минут назад

Контрольная работа

Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления

Срок сдачи к 30 дек.

5 минут назад
6 минут назад

Линейная алгебра

Контрольная, Математика

Срок сдачи к 15 дек.

6 минут назад

Решить 5 кейсов бизнес-задач

Отчет по практике, Предпринимательство

Срок сдачи к 11 дек.

7 минут назад

Решить одну задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

9 минут назад

Решить 1 задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

10 минут назад

Выполнить научную статью. Юриспруденция. С-07083

Статья, Юриспруденция

Срок сдачи к 11 дек.

11 минут назад

написать доклад на тему: Процесс планирования персонала проекта.

Доклад, Управение проектами

Срок сдачи к 13 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно