Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Операторные передаточные функции и их свойства

Тип Реферат
Предмет Физика
Просмотров
884
Размер файла
184 б
Поделиться

Ознакомительный фрагмент работы:

Операторные передаточные функции и их свойства

Академия России

Кафедра Физики

Лекция

Операторные передаточные функции и их свойства

Орел 2009


Учебные и воспитательные цели:

Разъяснить слушателям сущность операторных передаточных функций, устойчивых и неустойчивых электрических цепей, критерий устойчивости Гурвица, а также связь ОПФ с комплексной передаточной функцией.

Распределение времени лекции

Вступление………………………………………………………….5 мин.

Учебные вопросы:

1. Определение операторных реакций в сложных цепях………..15 мин.

2. Операторная передаточная функция……………………………20 мин.

3. Устойчивые и неустойчивые электрические цепи.

Критерий устойчивости Гурвица, полиномы Гурвица………….35 мин.

4. Связь между ОПФ и КПФ……………………………………….10 мин.

Заключение…………………………………………………………5 мин.

1. Определение операторных реакций в сложных цепях

В общем случае -изображение искомого колебания находится путем составления и решения системы уравнений в операторной форме в 3 этапа. Они могут быть составлены непосредственно по схеме цепи с использованием ранее изученных методов расчета, среди которых наибольшее распространение получили МУН и МКТ. В случае ненулевых начальных условий реактивные элементы должны быть отображены схемами замещения.

1 этап: система уравнений составленная по МУН для цепи имеющей N потенциальных узлов будет иметь вид:

.

Здесь – сть сумма операторных проводимостей, подключенных к данному узлу, а – проводимость, связывающая этот узел с соседним "i"-м узлом.

В правые части входят -изображения задающих токов, подключенных к "k"-му узлу.

Решая задачу по МКТ, следует, прежде всего, выбрать совокупность независимых контуров и, руководствуясь ранее полученным правилом, составить систему контурных уравнений.

В этой системе будет представлять собой сумму сопротивлений входящих в "k"-й контур, а есть сумма сопротивлений, которые одновременно входят в "k"-й и "i"-й контуры.

Знаки слагаемых этой суммы определяются установленными ранее правилами. В правые части уравнений входят операторные источники ЭДС.

Второй этап: нахождение ‑изображения реакции (операторного напряжения или операторного тока).

Если цепь содержит только один воздействующий источник (обозначим его ), то искомую реакцию можно найти по формуле:

,

где – минор определителя , относительно i‑й строки и k‑го столбца.

Важно отметить, что определитель и любые его миноры представляют собой рациональные функции (иначе, алгебраические дроби) оператора , все коэффициенты которых являются вещественными числами.

Третий этап: применение обратного преобразования Лапласа, в результате чего находится . Такие действия производятся на основе формулы обращения Римана-Меллина и являются достаточно сложными. Однако в частных случаях, имеющих большое прикладное значение, те же результаты могут быть получены более элементарным путем, а именно:

– использование таблиц соответствия;

– разложение на простые дроби или в ряд с последующим использованием таблиц соответствия.

2. Операторная передаточная функция

Отношение -изображения реакции к -изображению воздействия при нулевых начальных условиях называется операторной передаточной функцией (ОПФ). Обозначается .

В общем случае может быть безразмерной величиной или иметь размерность сопротивления или проводимости. Число ОПФ для конкретной цепи равно числу реакций.

Пусть в цепи действует один источник , а реакцией является одно из узловых напряжений или один из контурных токов.

Тогда:

.

Можно показать, что после раскрытия определителя и его минора , ОПФ будет иметь вид:

где и – вещественные числа, т. е. ОПФ электрической цепи представляет собой рациональную функцию с вещественными коэффициентами, причем степень числителя не может превышать степень знаменателя.

ОПФ не зависит от воздействия, а определяется только элементами схемы и порядком их соединения. Если известна ОПФ, то реакция находится как:

.

Пример: определить одну из ОПФ для последовательного контура, показанного на рис. 1.

Рис. 1

В данной схеме будет четыре ОПФ.

Найдем .

; ; .

Аналогичным образом находятся , , .

3. Устойчивые и неустойчивые электрические цепи. Критерий устойчивости Гурвица, полиномы Гурвица

Линейную электрическую цепь принято определять как устойчивую, если в ней не возникают неограниченно возрастающие свободные колебания. В противном случае ее определяют как неустойчивую. Такая трактовка следует из классических работ по теории устойчивости, выполненных русским математиком А. М. Ляпуновым (1857— 1918 гг.).

Большинство современных ЛРТУ являются активными, т. е. в схемах замещения содержат зависимые источники. Любая пассивная электрическая цепь является устойчивой. Если же она активна, то вопрос об ее устойчивости остается открытым: активная цепь может быть как устойчивой, так и неустойчивой.

При рассмотрении предыдущего вопроса было показано, что реакция находится из соотношения:

.

Пусть представляет собой -функцию, -изображение которой равно единице.

Тогда:

,

где и рациональные функции с вещественными коэффициентами.

Для нахождения оригинала такая функция может быть единственным образом разложена на сумму простых дробей вида:

.

Здесь являются корнями полинома .

Посредством указанного разложения по таблице соответствий находится выражение для .

При этом .

Заметим, что среди корней полинома могут быть как вещественные так и комплексные сопряженные. В случае вещественных корней функция будет убывающей, если .

Если же то слагаемые можно записать как:

.

Полученная функция является гармонической с амплитудной .

Последняя будет убывающей при .

Следовательно, система устойчива, если действительные (вещественные) части корней знаменателя характеристического уравнения отрицательны. (Фундаментальное положение, вытекающее из общей теории устойчивости А. М. Ляпунова, обоснованной в 90‑х годах прошлого века).

Для наглядного суждения о характере и значениях корней удобно изображать их точками на комплексной плоскости. Так, например, на рисунке 2 показано расположение на комплексной плоскости корней некоторого полинома знаменателя пятой степени.

Здесь корнями являются: вещественен и отрицателен, ; комплексны, сопряжены попарно и имеют отрицательные вещественные части. Очевидно, что в данном случае цепь будет устойчивой.

Наличие у характеристического уравнения корней с положительными вещественными частями приводит к тому, что любое случайное воздействие, каким бы оно не было малым, вызывает нарастающие по амплитуде свободные колебания. Значения амплитуды колебаний ограничиваются нелинейными свойствами усилительных приборов. Внешне рассматриваемая цепь без каких-либо видимых воздействий "сама" переходит в режим установившихся колебаний или, как говорят, "самовозбуждается".

Электрические цепи, у которых свободные колебания, пока они малы, возрастают по времени, причем предел их возрастания определяется нелинейными свойствами элементов цепи, называют неустойчивыми.

Характеристическое уравнение знаменателя ОПФ любой неустойчивой цепи должно иметь корни, расположенные в правой части комплексной плоскости. Одной из важнейших задач, возникающих при проектировании самых разнообразных цепей с зависимыми источниками, является задача исследования проектируемой цепи на устойчивость.

Критерий устойчивости Гурвица, полиномы Гурвица

Во всех задачах исследования цепи на устойчивость необходимо решить, имеет ли характеристическое уравнение знаменателя ОПФ проектируемой цепи корни, расположенные в правой полуплоскости.

Методы, с помощью которых можно судить об устойчивости цепи, не прибегая к вычислению корней характеристического уравнения знаменателя, называют критериями устойчивости.

В настоящее время известен ряд критериев устойчивости, среди которых чаще всего используются критерии устойчивости, предложенные А. Гурвицем (1895), А. В. Михайловым (1938) и Г. Найквистом (1932). Не все они одинаково удобны и универсальны, в каждом частном случае один из них может оказаться предпочтительным.

Один из первых критериев устойчивости был найден немецким математиком А. Гурвицем и опубликован им в 1895 году. Он определил условия, которым должны удовлетворять специально составленные соотношения между коэффициентами алгебраического уравнения с тем, чтобы все корни последнего имели отрицательные вещественные части или, иными словами, были расположены в левой полуплоскости.

Формулировка критерия устойчивости Гурвица: (в алгебре критерий Рауса-Гурвица) цепь будет устойчивой, если определитель:

,

составленный из коэффициентов полинома знаменателя ОПФ:

и все его главные миноры ; ; принимают положительные значения.

Этот критерий приводится без доказательства. Определитель принято называть определителем Гурвица. Он составляется по следующему простому правилу. На главной его диагонали выписываются коэффициенты в том порядке, в котором они расположены в уравнении, начиная с коэффициента . В каждом из столбцов под диагональным элементом выписываются коэффициенты с убывающими, а над ним – с возрастающими индексами. Все коэффициенты, индексы которых превышают или отрицательны, заменяются нулями. При этом следует учесть, что .

Пример. Пусть дан полином четвертой степени:

.

Ему соответствует определитель Гурвица:

.

Главные миноры этого определителя:

; ; ; .

Определитель и все его миноры положительны. Следовательно, все корни рассматриваемого уравнения лежат в левой полуплоскости. Действительно, легко убедиться подстановкой, что значения корней уравнения таковы:

; ; .

Полиномы с вещественными коэффициентами, нули которых расположены в левой полуплоскости, принято в ТЭЦ называть полиномами Гурвица или устойчивыми полиномами. В дальнейшем их будем обозначать J(p). Можно показать, что положительность коэффициентов полинома и неравенство их нулю есть необходимое, но недостаточное условие принадлежности его к классу полиномов Гурвица.

Так полиномы и не могут быть J(p) поскольку в первом есть отрицательный коэффициент (‑1), а во втором коэффициент при равен нулю.

В дальнейшем ОПФ пассивных цепей будем записывать в виде:

.

4. Связь между ОПФ и КПФ

КПФ образуется из ОПФ путем замены оператора на оператор , т.е. .

.

Если степень, в которую возводится оператор четная, то: , если же она нечетная, то .

Отсюда следует вывод, что вещественные части полиномов представляют собой четные функции частоты, а мнимые – нечетные, т. е. можно в общем виде записать:

,

где – четные полиномы частоты .

Возьмем модуль и аргумент и в результате получим:

.

Откуда:

АЧХ: ;

ФЧХ: .

По этим выражениям можно построить графики.

Литература

1. Белецкий А. Ф. Теория линейных электрических цепей. – М.: Радио и связь, 1986. (Учебник);

2. Бакалов В. П. и др. Теория электрических цепей. – М.: Радио и связь, 1998.

3. Качанов Н. С. и др. Линейные радиотехнические устройства. М.: Воен. издат., 1974. (Учебник);

4. Попов В. П. Основы теории цепей – М.: Высшая школа, 2000.(Учебник)


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
ИжГТУ имени М.Т.Калашникова
Сделала все очень грамотно и быстро,автора советую!!!!Умничка😊..Спасибо огромное.
star star star star star
РГСУ
Самый придирчивый преподаватель за эту работу поставил 40 из 40. Спасибо большое!!
star star star star star
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачи по математике

Решение задач, Математика

Срок сдачи к 14 дек.

только что

Чертеж в компасе

Чертеж, Инженерная графика

Срок сдачи к 5 дек.

только что

Выполнить курсовой по Транспортной логистике. С-07082

Курсовая, Транспортная логистика

Срок сдачи к 14 дек.

1 минуту назад

Сократить документ в 3 раза

Другое, Информатика и программирование

Срок сдачи к 7 дек.

2 минуты назад

Сделать задание

Доклад, Стратегическое планирование

Срок сдачи к 11 дек.

2 минуты назад

Понятия и виды пенсии в РФ

Диплом, -

Срок сдачи к 20 янв.

3 минуты назад

Сделать презентацию

Презентация, ОМЗ

Срок сдачи к 12 дек.

3 минуты назад

Некоторые вопросы к экзамену

Ответы на билеты, Школа Здоровья

Срок сдачи к 8 дек.

5 минут назад

Приложения AVA для людей с наступающим слуха

Доклад, ИКТ

Срок сдачи к 7 дек.

5 минут назад

Роль волонтеров в мероприятиях туристской направленности

Курсовая, Координация работы служб туризма и гостеприимства

Срок сдачи к 13 дек.

5 минут назад

Контрольная работа

Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления

Срок сдачи к 30 дек.

5 минут назад
6 минут назад

Линейная алгебра

Контрольная, Математика

Срок сдачи к 15 дек.

6 минут назад

Решить 5 кейсов бизнес-задач

Отчет по практике, Предпринимательство

Срок сдачи к 11 дек.

7 минут назад

Решить одну задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

9 минут назад

Решить 1 задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

10 минут назад

Выполнить научную статью. Юриспруденция. С-07083

Статья, Юриспруденция

Срок сдачи к 11 дек.

11 минут назад

написать доклад на тему: Процесс планирования персонала проекта.

Доклад, Управение проектами

Срок сдачи к 13 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно