Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Анализ динамического поведения механической системы

Тип Реферат
Предмет Физика
Просмотров
448
Размер файла
88 б
Поделиться

Ознакомительный фрагмент работы:

Анализ динамического поведения механической системы

Содержание:

Аннотация

Исходные данные

1. Применение основных теорем динамики механической системы

1.1 Постановка второй основной задачи динамики системы

1.2 Определение закона движения системы

1.3 Определение реакций внешних и внутренних связей

2. Построение алгоритма вычислений

3. Применение принципа Даламбера-Лагранжа и уравнений Лагранжа второго рода.

3.1 Составление дифференциального уравнения движения механизма с помощью принципа Даламбера-Лагранжа.

Анализ результатов


Аннотация

Дана механическая система с одной степенью свободы, представляющая собой совокупность абсолютно твердых тел, связанных друг с другом посредством невесомых растяжимых нитей, параллельных соответствующим плоскостям. Система снабжена внешней упругой связью с коэффициентом жесткости с. На первое тело системы действует сила сопротивления и возмущающая гармоническая сила . Трением качения и скольжения пренебрегаем. Качение катков происходит без скольжения, проскальзывание нитей на блоках отсутствует. Применяя основные теоремы динамики системы и аналитические методы теоретической механики, определен закон движения первого тела и реакции внешних и внутренних связей. Произведен численный анализ полученного решения с использованием ЭВМ.

Исходные данные:

m = 1 кг
r = 0.1 мс = 4000 H/м

Часть 1. Применение основных теорем динамики механической системы

1.1 Постановка второй основной задачи динамики системы.

Расчетная схема представлена на рисунке 1.

Здесь обозначено:

; ; - силы тяжести;

- нормальная реакция опорной плоскости;

- сила сцепления;

- упругая реакция пружины;

- реакция подшипников;

- сила вязкого сопротивления;

- возмущающая сила.

Рассматриваемая механическая система имеет одну степень свободы (нити нерастяжимые, качение катка (3) происходит без скольжения). Будем определять ее положение с помощью координаты S. Начало отсчета координаты совместим с положением статического равновесия центра масс груза (1).

Для построения дифференциального уравнения движения системы используем теорему об изменении кинетической энергии механической системы в форме:

- сумма мощностей внешних сил;

- сумма мощностей внутренних сил;

Тогда кинетическая энергия системы равна сумме кинетических энергий тел,

(1.2)

(1.3) Груз (1) совершает поступательное движение, ;

(1.4) Блок (2) совершает вращательное движение, , где

(1.5) Каток (3) совершает плоскопараллельное движение, , где

Кинетическая энергия всего механизма равна:

(1.6) ;

Выразим – через скорость груза (1)

(1.7) ; ;

Подставляя кинематические соотношения (1.7) в выражение (1.6), получаем:


(1.8)

(1.9)

;

Найдем производную от кинетической энергии по времени:

(1.10)

Вычислим сумму мощностей внешних и внутренних сил. Мощность силы равна скалярному произведению вектора силы на скорость в точке ее приложения;

(1.11)

Рассматриваемая нами механическая система является неизменяемой, т.е. тела, входящие в систему, недеформируемые и скорости их точек относительно друг друга равны нулю. Поэтому сумма мощностей всех внутренних сил будет равняться нулю:

(1.12) = 0;

Будут равняться нулю и мощности следующих внешних сил, приложенных в точках, скорости которых равны нулю:


Сумма мощностей остальных внешних сил:

(1.13)

С учетом кинематических соотношений (1.7) сумму мощностей внешних сил определим:

(1.14)

где приведенная сила.

Упругую силу считаем пропорциональной удлинению пружины, которое равно сумме статического и динамического удлинений:

(1.15)

Сила вязкого сопротивления , тогда

(1.16)

В состоянии покоя системы приведенная сила равна нулю. Полагая в (1.16) S=0, =0 и F(t)=0, получаем условие равновесия системы:

(1.17)

Отсюда статическое удлинение пружины равно:

(1.18)

Подставляя (1.18) в (1.16), получаем окончательное выражение для приведенной силы:

(1.19)

Подставив выражения для производной от кинетической энергии и сумму мощностей всех сил с учетом (1.19) в (1.1), получаем дифференциальное уравнение движения системы:

(1.20)

(1.21)

где k циклическая частота свободных колебаний;

n – показатель степени затухания колебаний;

1.2 Определение закона движения системы

Проинтегрируем дифференциальное уравнение (1.20). общее решение этого неоднородного уравнения складывается из общего решения однородного уравнения и частного решения неоднородного :

S = + ;

Однородное дифференциальное уравнение, соответствующее данному неоднородному, имеет вид:

Составим характеристическое уравнение и найдем его корни:

т.к. n < k => решение однородного уравнения имеет вид:

где частное решение дифференциального уравнения ищем в виде правой части:

далее получаем:

Сравнивая коэффициенты при соответствующих тригонометрических функциях справа и слева, получаем систему алгебраических уравнений для определения состояния А и В


Решая эту систему получаем следующие выражения:

А = 0.04 м;

В = - 0.008 м;

Общее решение дифференциального уравнения:

Постоянные интегрирования определяем из начальных условий, при t = 0 имеем:

Решая эту систему получаем:

1.3 Определение реакций внешних и внутренних связей

Для решения этой задачи расчленим механизм на отдельные части и изобразим расчетные схемы отдельно для каждого тела. Определение реакций связей проведем с помощью теоремы об изменении кинетического момента и теоремы об изменении количества движения.

Тело №1:

Тело №2:

Тело №3:

C учётом кинематических соотношений (1.7) полученную систему уравнений преобразуем к вид:

Решая эту систему, получаем выражение для определения реакций связей:


2. Построение алгоритма вычислений:

(2.1) Исходные данные:

(2.2) Вычисление констант:

(2.3) Задание начального времени: t=0;

(2.4) Вычисление значений функций в момент времени t=0;

(2.5) Вычисление реакций связей:

(2.6) Вывод на печать значений искомых функций в момент времени t;

(2.7) Определение значения времени на следующем шаге

(2.8) Проверка условия окончания цикла:

(2.9) Возврат к пункту (2.4).

3. Применение принципа Даламбера-Лагранжа и уравнения Лагранжа второго рода

3.1 Применение принципа Даламбера-Лагранжа

Общее уравнение динамике системы есть математическое выражение принципа Даламбера-Лагранжа.

сумма элементарных работ всех активных сил на возможном перемещении системы;

сумма элементарных работ всех инерции сил на возможном перемещении системы.

Изобразим на рисунке активные силы и силы инерции (рис.3)

Идеальные связи:

Не учитываем, и не отображаем на расчетной схеме, поскольку по определению работа их реакций на любом возможном перемещении системы равна 0.

Сообщим системе возможное перемещение.

Вычисляя последовательно элементарные работы активных сил и суммируя получим:


(2)

Найдём возможную работу сил инерции:

Запишем выражение для главных векторов и главных моментов сил инерции;

Используя кинематические соотношения (1.7), определим:

Теперь возможную работу сил инерции можно преобразовать к виду:

(3)

Далее подставляя выражения (2) и (3) в (1), т.е в общее уравнение динамики получаем

Поделив это уравнение на , получим дифференциальное уравнение вынужденных колебаний системы:

Анализ результатов

В данной курсовой работе мы исследовали динамическое поведение механической системы с использованием основных теорем и уравнений теоретической механики. Дифференциальное уравнение движения механической системы получено тремя способами. Во всех случаях коэффициенты , n, k получились одинаковыми и совпали с компьютерной распечаткой, что говорит об их правильности. В процессе решения дифференциального уравнения данной механической системы были получены законы движения первого груза, его скорость и ускорение в зависимости от времени t. На основании этих зависимостей были определены законы изменения всех остальных характеристик механической системы, в том числе и реакции связей.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно