Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Микропроцессорная система на базе комплекта КР580

Тип Реферат
Предмет Коммуникации и связь
Просмотров
1680
Размер файла
394 б
Поделиться

Ознакомительный фрагмент работы:

Микропроцессорная система на базе комплекта КР580

Федеральное агентство образования Российской Федерации

Государственное образовательное учреждение

среднего профессионального образования

Краснотурьинский индустриальный колледж

Специальность: Вычислительные машины, комплексы, системы и сети

Курсовой проект по предмету микропроцессоры и микросистемы

на тему: Микропроцессорная система на базе комплекта КР580

Краснотурьинск 2009


Содержание

Введение

1. Описание применяемых элементов

1.1 Микропроцессор КР580ВМ8

1.2 Генератор тактовых импульсов КР580ГФ2

1.3 Контроллер прерываний КР580ВН5

1.4 Системный контроллер КР580ВК28

1.5 Программируемый последовательный интерфейс КР580ВВ51

1.6 Контроллер клавиатуры и дисплея КР580ВВ79

1.7 Микросхема ОЗУ К537РУ17

1.8 Микросхема ПЗУ К573РФ6

1.9 Микросхема дешифратора К155ИД3

1.10 Микросхема К514ИД2

1.11 Буферный регистр 1533АП5

2. Расчетная часть

2.1 Расчет и планирование адресного пространства памяти

2.2 Построение схем дешифрации адресов памяти

2.3 Расчет и планирование адресного для устройств ввода-вывода

2.4 Построение схем дешифрации адресов устройств ввода-вывода

3. Структурная схема

4. Принципиальная схема

Заключение

Список используемой литературы

Введение

В данном курсовом проекте рассмотрен микропроцессорный комплект серии КР580. Этот набор микросхем, аналогичен набору микросхем Intel 82xx. Представляет собой 8-разрядный комплект на основе n-МОП технологии. Система команд СМ1800, ГОСТ 11305.910-80. Большинство микросхем является аналогами чипов серии MCS-85 фирмы Intel.

В настоящее время для построения различных микропроцессорных систем, устройств обработки информации и различных устройств вычислительной техники широко используются микропроцессорные системы на базе серии КР580.

В комплект КР580 входит:

- Микропроцессор КР580ВМ80;

- Системный контроллер КР580ВК28;

- Параллельный интерфейс КР580ВВ55;

- Контроллер прерываний КР580ВМ59;

- Контроллер клавиатуры и дисплея КР580ВВ79.

Хотя этот микропроцессорный комплект был создан в восьмидесятых годах, он широко используется до сих пор и изучается в различных образовательных заведениях так как, изучив его, можно понять работу более сложных микропроцессорных систем.

Микропроцессор КР580 используется в различных системах с не высокими требованиями к производительности, и в тех системах, когда использование более мощных процессоров экономически не выгоден.

Данный курсовой проект необходим, для того чтобы учащиеся изучили основные элементы микропроцессорного комплекта, поняли их работу, научились самостоятельно строить микропроцессорные системы, научились находить неполадки и устранять их.


1. Описание используемых элементов

1.1 Микропроцессор кр580вм80

Процессор содержит 4500 транзисторов по технологии 6 мкм n-МДП Тактовая частота процессора КР580ВМ80 - 2 МГц. Каждая команда выполняется за 1..5 машинных циклов, каждый из которых состоит из 3..5 тактов. Средняя производительность 200..300 тыс. операций в секунду на частоте 2 МГц. Микропроцессор имеет раздельные 16-разрядную шину адреса и 8-разрядную шину данных. 16-разрядная шина адреса обеспечивает прямую адресацию внешней памяти объемом до 64 Кбайт и 256 устройств ввода/вывода.

Рисунок 1. Условное обозначение микросхемы КР580ВМ80


Таблица 1.Назначение выводов микропроцессора КР580ВМ80

ВыводОбозначениеНазначение выводов
6,5,4,3,7,8,9,10D0-7Двунаправленная шина данных

25,26,27,29,30,31,32,33,34,35,

1,40,37,38,39,36

А0-15Шина адреса
15,22F1, F2Тактовые сигналы
13HOLDЗапрос захвата шин
14INTЗапрос прерывания
23READYГотовность
12RESETСигнал системного сброса
16INTEРазрешение прерывания
17DBINВвод с шины данных
18WRЗапись
19SYNCСигнал синхронизации
21HLDAПодтверждение захвата шин
24WAITОжидание или подтверждение состояния ожидания
11-5V-5В
20+5V+5В
28+ 12V+ 12В
2GNDОбщий

1.2 Генератор тактовых импульсов КР580ГФ24

Микросхема КР580ГФ24 - генератор тактовых сигналов фаз С1, С2, предназначен для синхронизации работы микропроцессора КР580ВМ80.

Генератор формирует:

- две фазы С1, С2с положительными импульсами, сдвинутыми во времени, амплитудой 12В и частотой 0,5 - 3,0МГц;

- стробирующий сигнал составляет STB длительностью не менее (Топ/9-15нс), где Топ - период тактовых сигналов опорной частоты;

- тактовые сигналы. С, синхронные с фазой С2, амплитудой уровня ТТЛ.


Рисунок 2. Условное обозначение микросхемы КР580ГФ24

Таблица 2. Назначение выводов генератора тактовых импульсов КР580ГФ24

ВыводОбозначениеНазначение выводов
1SRУстановки в исходное состояние микропроцессора и системы
2RESINУстановка 0
3RDYINСигнал "Готовность"
4RDYСигнал "Готовность"
5SYNСигнал синхронизации
6CТактовый сигнал, синхронный с фазой С2
7STBСтробирующий сигнал состояния
8GNDОбщий
9Ucc2Напряжение питания +12В
10C2Тактовые сигналы -фазы С2
11C1Тактовые сигналы -фазы С1
12OSCТактовые сигналы опорной частоты
13TANKВывод для подключения колебательного контура
14, 15XTAL1, XTAL2Выходы для подключения резонатора
16Ucc1Напряжение питания +5В

1.3 Системный контроллер КР580ВК28

Микросхема КР580ВК28 - системный контролер, применяется в микропроцессорных системах на базе микропроцессора КР580ВМ80 для формирования управляющих сигналов.

Системный контролер формирует управляющие сигналы по сигналам состояния микропроцессора при обращении к ЗУ: RD и WR, при обращении к УВВ: RDI0 и WRI0, INTA, а также обеспечивает прием и передачу 8-разрядной информации между каналом данных микропроцессора.

Рисунок 3. Условное обозначение микросхемы КР580ВК28

Таблица 3. Назначение выводов системного контроллера КР580ВК28

ВыводОбозначениеНазначение выводов
1STBСтробирующий сигнал состояния
2HLDAПодтверждение захвата
3TRВыдача информации
4RCПрием информации
5, 7, 9, 11, 13, 16, 18, 20DB4, DB7, DB3, DB2, DB0, DB1, DB5, DB6Канал данных системы
6, 8, 10, 12, 15, 17, 19, 21D4, D7, D3, D2, D0, D1, D5, D6Канал данных микропроцессора
14GNDОбщий
22BUSENУправление передачей данных и выдачи сигналов
23INTAПодтверждение запроса прерывания
24RDЧтение из ЗУ
25RDI0Чтение из УВВ
26WRЗапись в ЗУ
27WRI0Запись в УВВ
28UccНапряжение питания +5В

1.4 Контроллеры интерфейса RS 232

1.4.1 Микросхема КР580ВВ51

Микросхема КР580ВВ51-универсальна синхронный приемопередатчик, предназначен для аппаратной реализации последовательного протокола обмена между микропроцессором КР580ВМ80 и каналами последовательной передачи дискретной информации.

Микросхема преобразует параллельный код, получаемый от центрального процессора, в последовательный поток символов со служебными битами и выдает этот поток в последовательный канал связи с различной скоростью, а также выполняет обратное преобразование: последовательный поток символов в параллельный 8-разрядное слово.

Рисунок 4.1. Условное обозначение микросхемы КР580ВВ51

Таблица 4. Назначение выводов микросхемы КР580ВВ51

ВыводОбозначениеНазначение вывода
1, 2, 5-8, 27, 28D2-D7, D0, D1Канал данных - обмен информацией между микропроцессором и микросхемой
3RxDПриемник микросхемы
4GNDОбщий
9TxCСинхронизации передачи
10WRЗапись информации
11CSВыбор микросхемы
12CO/DУправление (данные)
13RDЧтение информации
14RxRDYГотовность приемника
15TxRDYГотовность передатчика
16SYNDET/BDДвунаправленный трех - стабильный программируемый ввод/вывод
17CTSГотовность внешнего устройства принять данные
18TxENDКонец передачи
19TxDПередатчик микросхемы
20CСинхронизация
21SRУстановка исходного состояния
22DSRГотовность внешнего устройства передать данные
23RTSЗапрос приемника внешнего устройства на прием данных
24DTRЗапрос передатчика внешнего устройства на прием данных
25RxCСинхронизация приема
26UccНапряжение питания +5В

Таблица 4.1. Таблица истинности сигналов микросхемы КР580ВВ51

Сигналы на входах

Направление и вид информации

СО/DRDWRCS
1100Канал данных системы управление
0100Канал данных системы данных
1010Канал данных системы состояния
0010Канал данных системы данных
Х110Высокоомныое состояние канала данных
ХХХ1

1.4.2 Таймер КР580ВИ53

Микросхема КР580ВИ53 -трехканальное программируемое устройство (таймер), предназначено для организации работы микропроцессорных систем в режиме реального времени. Программируемый таймер реализован в виде трех независимых 16-разрядных каналов с общей схемой управления. Каждый канал может работать в шести режимах.

Управляющее слово определяет режим работы канала, тип счета, формат чисел.

Рисунок 4.2. Условное обозначение микросхемы КР580ВИ53

Таблица 4.3. Назначение выводов микросхемы КР580ВИ53

ВыводОбозначениеНазначение выводов
1-8D7-D0Канал данных
9, 15, 18C0, C1, C2Синхронизация каналов 0-2
10, 13, 17OUT0, OUT1, OUT2Сигналы каналов 0, 1, 2
11, 14, 16CE0, CE1, CE2Сигналы каналов 0, 1, 2
12GNDОбщий
19, 20A0, A1Сигналы выбора каналов 0, 1, 2
21CSВыбор микросхемы
22RDЧтение
23WRЗапись
24UccНапряжение питания 5В

1.5 Контроллер прерываний КР580ВН59

Предназначен для организации обработки приоритетных 8-уровневых запросов прерываний от восьми внешних устройств. Контроллер КР580ВН59 был разработан для микропроцессорных систем, построенных только на основе микропроцессора КР580ВМ80. Контроллеры прерываний можно каскадировать для получения 64-уровневой системы прерываний.

Рисунок 5. Условное обозначение микросхемы КР580ВН59

Таблица 5. Назначение выводов КР580ВН59

ВыводОбозначениеНазначение выводов
11,10,9,8,7,6,5,4D0-7Шина данных микропроцессора
3,2RD/WRЧтение/запись информации в регистры
27А0Разряд шины адреса микропроцессора
1CSСигнал выбора кристалла

18,19,20,21,22,

23,24,25

IR0-7Сигналы запросов прерываний от внешних устройств ввода/вывода
17INTСигнал запроса прерываний, поступающий на микропроцессор
26INTAСигнал подтверждения прерывания, поступающий от микропроцессора
16SP/ENПрограммирование ведомого/разрешения буфера
12,13,15CAS0-2Линии каскадирования
14GNDОбщий
28VccПитание

Таблица 5.1. Таблица истинности

1.6 Контроллер клавиатуры и дисплея КР580ВВ79

Программируемое интерфейсное устройство, предназначенное для ввода и вывода информации в системах, выполненных на основе 8- и 16-разрядного микропроцессора КР580ВМ80. Кроме того, микросхема может применяться и как самостоятельное устройство при выполнении требований, предъявляемых к электрическим и временным параметрам.

Клавиатурная часть обеспечивает ввод информации в микросхему через линии возврата RET7-RET0 с клавиатуры (клавиатурная матрица объемом 8 слов*8 разрядов с возможностью расширения до 4*8 слов*8 разрядов) и матрицы датчиков (8 слов*8 разрядов), а также ввод по стробирующему сигналу (8 слов*8 разрядов). Для хранения информации в микросхеме предусмотрено 8 байт ОЗУ.

Дисплейная часть микросхемы обеспечивает вывод информации по 4-разрядным каналам DSPA3-DSPA0 и DSPB3-DSPB0 в виде двоичного кода на 8- и 16-разрядные цифровые или алфавитно-цифровые дисплеи.


Рисунок 6. Условное обозначение микросхемы КР580ВВ79

Таблица 6. Назначение выводов микросхемы КР580ВВ79

ВыводОбозначениеНазначение выводов
1, 2, 5-8, 38, 39RET2-RET7, RET0, RET1Линии возврата
3CСинхронизация
4INTЗапрос прерывания
9SRУстановка
10RDЧтение информации
11WRЗапись информации
1-19D0-D7Канал данных
20GNDОбщий
21INS/DКоманда / данные
22CSВыбор микросхемы
23BDГашение отображения
24-27DSPA3-DSPA0Канал дисплея А
28-31DSPB3-DSPB0Канал дисплея В
32-35S0-S3Линии сканирования
36SHСдвиг
37CO/STBУправление / стробирующий сигнал
40UccНапряжение сигнала

1.7 Микросхема ОЗУ К537РУ17

Статическое асинхронное ОЗУ на основе КМОП-структур.

По заданию ОЗУ нам необходимо 8 кбайт. Следовательно, нам необходимо поставить 1 штуку.

Классификационные параметры К537РУ17:

· Информационная емкость – 64 Кбит = 8 Кбайт

· Организация - 8К*8

· Время выборки адреса - не более 200 нс.

· Выход - три состояния

Рисунок 7. Условное обозначение микросхемы К537РУ17

Таблица 7. Назначение выводов микросхемы К537РУ17

ВыводыНазначениеОбозначение

2,3-10,

21,23,24,25

Адресные входы

А1270

А101198

11-13,

15-19

Входы-выходы данных

DO0-DO2,

DO3-DO7

20,26Выбор микросхемы-CE1,CE2
22Разрешение по выходу-OE
27Сигнал записи - считывания-WE
28Напряжение питанияUcc
1Свободный---
14Общий0 В

Таблица 7.1. Таблица истинности микросхемы К537РУ17

CE1CE2-OEWEA0-A12DO0-DO7Режим работы
MMXXXRoffХранение
LHXLALЗапись 0
LHXLAHЗапись 1
LHLHAДанные в прямом кодеСчитывание
LHHHARoffЗапрет выхода

Примечание: М - Любая комбинация уровней или сигналов, отличная от - CE1=L, CE2=H.

1.8 Микросхема ПЗУ К573РФ6

По заданию 48 кбайт – не обходимо 6 штук.

Для стирания записанной информации микросхему нужно извлечь из контактного устройства, замкнуть все ее выводы полоской фольги и поместить под источник УФ освещения, обеспечив ее обдув. Однако стирание можно произвести , не извлекая микросхему из контактного устройства, но тогда нужно отключить напряжение питания и сигналы. Типовые источники стирающего излучения - дуговые ртутные лампы и лампы с парами ртути в кварцевых баллонах: ДРТ-220, ДБ-8 и др. Излучение проникает к кристаллу РПЗУ через прозрачное окно в крышке корпуса. Время стирания 30...60 минут.

Для предохранения от случайного стирания информации окно в крышке корпуса закрывается специальной пленкой.

Рисунок 8. Условное обозначение микросхемы К573РФ6


Таблица 8. Назначение выводов микросхемы К573РФ6

ВыводыНазначениеОбозначение
2-10, 21,23,24,25Адресные входы

А0 – A12

11-13,

15-19

Входы-выходы данных

DO0-DO2,

DO3-DO7

20,26Выбор микросхемы-CE0,CE1
22Разрешение по выходу-OE
27Сигнал записи - считывания-WE
28Напряжение питанияE+
1Свободный---
14ОбщийGnd

Таблица 8.1. Таблица истинности К573РФ6

ACEOEРКUpрUcc
ХранениеXXXE++5В
СчитываниеАШE++5В
Контроль записиАШ+ 19В+5В
Запись словаАШШШ+19В+5В

1.9 Микросхема дешифратора К155ИД3

К155ИД3- дешифратор, позволяющий преобразовать четырехразрядный код, поступающий на входы А0-А3 в напряжение низкого логического уровня, появляющееся на одном из шестнадцати выходов 0-15. Дешифратор имеет два входа разрешения дешифрации Е0 и Е1. Эти входы можно использовать как логические, когда дешифратор ИД3 служит демультиплексором данных. Тогда входы А0-А3, используются как адресные, чтобы направить поток данных, принимаемых входами Е0 или Е1, на один из выходов 0-15. На второй, не используемый в этом включении вход Е, следует подать напряжение низкого уровня.

По входам Е0 и Е1 даются сигналы разрешения выходов, чтобы устранять текущие выбросы, которыми сопровождается дешифрация кодов, появляющихся не строго синхронно (например, поступающих от счетчика пульсаций). Чтобы разрешить прохождение данных на выходы, на входы Е0 и Е1 следует дать напряжение низкого уровня. Эти входы необходимы также при наращивании числа разрядов дешифрируемого кода. Когда на входах Е0 и Е1 присутствуют напряжения высокого уровня, на выходах 0-15 появляются высокие уровни.

Выбор контроллера по конкретному адресу осуществляется с помощью дешифратора К155ИД3 (рис. 9). Назначение его выводов показано в таблице 15.

Рисунок 9. Дешифратор К155ИД3

Таблица 9. Назначение выводов БИС К155ИД3

вывода

Назначение

вывода

Назначение
1Выход 013Выход 11
2Выход 114Выход 12
3Выход 215Выход 13
4Выход 316Выход 14
5Выход 417Выход 15
6Выход 518Вход стробирующий
7Выход 619Вход стробирующий
8Выход 720Вход информационный
9Выход 821Вход информационный
10Выход 922Вход информационный
11Выход 1023Вход информационный
12Общий24Ucc

1.10 Микросхема К514ИД2

Дисплей построен на основе 8-разрядного 7-сегментоного индикатора с общим анодом CD8-BW30R6-A11, красного свечения. Для курсового проекта необходим один такой индикатор. Управление этими индикаторами осуществляет микросхема К514ИД2 (рис. 10.).

Рисунок. 10. Условное графическое обозначение дешифратора К514ИД2

Для экономии выводов микроконтроллера, а так же для удобства написания программы по выводу числовых значений на семисегментных индикаторы, в устройстве применяются дешифраторы двоичного кода в код семисегментных индикаторов. В качестве преобразователей двоичного кода в семиэлементный промышленность выпускает дешифраторы К514ИД1, К514ИД2, КР514ИД1, КР514ИД2. Для совместной работы с индикаторами, имеющими общий анод – АЛС333Б, возьмём микросхему КР514ИД2. В соответствии с рисунком 10, часть выводов подсоединяется к контроллеру, по которым на дешифратор поступает число в двоичном код, а другая часть выводов идёт на семисегментный индикатор. Так же есть вывод управления дешифратором. При подаче на этот вход логической “1”, дешифратор включён, то есть данные переводятся из двоичного кода в код семисегментных индикаторов. Если подать логический “0”, то дешифратор выключен. Максимальный выходной ток этого дешифратора составляет 25 мА. Его отличительной особенностью является то, что резисторы, ограничивающие ток, в нём отсутствуют.


1.11 Буферный регистр 1533АП5

Для увеличения нагрузочной способности шины адреса микропроцессора и согласования этих шин с памятью и внешними устройствами необходимы шинные формирователи. В этой МПС в качестве шинного формирователя шины адреса используются буферные регистры 1533АП5 (рис. 11.). Шина адреса имеет 16 разрядов, так как этот регистр имеет 8 разрядов, для построения буфера потребуется 2 микросхемы. Одна микросхема формирует буфер для разрядов шины адреса А0-А7, а другая — А8-А15. Назначение выводов приводится в таблице 16.

Рисунок. 11. Условное обозначение буферного регистра 1533АП5 с нумерацией выводов

Таблица 11. Назначение выводов БИС 1533АП5

ВыводыНазначениеОбозначение
2, 4, 6, 8, 17, 15, 13, 11Информационные входы. Подкл. к выходам микропроцессора А0-А7 для первой БИС и А8-А15 — для второй БИСDI0-DI3
2, 3-10, 21, 23, 24, 25, 26, 27Информационные выходы. Подключаются к соответствующим разрядам внешней шиныDO0-DO3
1, 19Входной сигнал “Разрешение выхода”. Если OE=0, то информационные выходы перекл. в высокоимпедансное состояниеOE

2. Расчетная часть

2.1 Расчет и планирование адресного пространства памяти

По заданию необходима ПЗУ объемом 48 кбайт, взята микросхема объемом на 8 кбайт, следовательно, необходимо поставить таких 6 микросхем.

По заданию ОЗУ необходимо 8 кбайт. Взята микросхема объемом 8 кбайт.

Так как микропроцессор начинает выполнять программы с адреса 0 (после включения или сброса), то по этому начиная с адреса 0 должна быть, установлена ПЗУ, в которую записывается программа для начала работы устройства. В оставшейся части адресов памяти располагается ОЗУ.

Таблица 12. Расположение микросхем памяти по адресам

АдресТип памяти

0000h

1FFFh

ПЗУ1

2000h

3FFFh

ПЗУ2

4000h

5FFFh

ПЗУ3

6000h

7FFFh

ПЗУ4

8000h

9FFFh

ПЗУ5

A000h

BFFFh

ПЗУ6

C000h

DFFFh

ОЗУ

E000h

FFFFh

Устройством не используется

Следующим этапом следует расчет и построение дешифрации адресов .

Таблица 13. Расчет адресов памяти

А15А14А13А12А11А10А9А8А7А6А5А4А3А2А1А0
ПЗУ10000h0000000000000000
1FFFh0001111111111111
ПЗУ22000h0010000000000000
3FFFh0011111111111111
ПЗУ34000h0100000000000000
5FFFh0101111111111111
ПЗУ46000h0110000000000000
7FFFh0111111111111111
ПЗУ58000h1000000000000000
9FFFh1001111111111111
ПЗУ6А000h1010000000000000
BFFFh1011111111111111
ОЗУC000h1100000000000000
DFFFh1101111111111111

Нет

устр-в

E000h
FFFFh


2.2 Построение схем дешифрации адресов памяти

Схема 1. Построение функции для ПЗУ

Схема 2. Построение функции для ПЗУ 2


Схема 3. Построение функции для ПЗУ

Схема 3. Построение функции для ПЗУ 4

Схема 5. Построение функции для ПЗУ 1


Схема 6. Построение функции для ПЗУ 1

Схема 7. Построение функции для ОЗУ 1

В качестве анализа четырех старших разрядов шины адреса можно использовать дешифратор двоично-десятичный, который получив двоичный код на входе активирует выход с соответствующим номером. Выходы дешифратора для каждой микросхемы объединяем функцией И.


Схема 8. Построение с помощью дешифратора

2.3 Расчет и планирование адресного для устройств ввода-вывода.

Для устройств ввода-вывода планирование адресов выполняется аналогично.

Таблица 14. Расположение микросхем устройств ввода-вывода по адресам.

00h

03h

ВН59

04h

05h

ВИ53

06h

07h

ВВ51

08h

09h

ВВ79

AFh

FFh

Не используется

Следующим этапом следует расчет и построение дешифрации адресов устройств ввода-вывода.


Таблица 15. Расчет адресов памяти

А15А14А13А12А11А10А9А8А7А6А5А4А3А2А1А0
ВН5900h0000000000000000
01h0000000000000001
ВИ5302h0000000000000010
03h0000000000000011
ВВ5104h0000000000000100
05h0000000000000101
ВВ7906h0000000000000110
07h0000000000000111
Не исп.08h
FFh

2.4 Построение схем дешифрации адресов устройств ввода-вывода

Схема 8. Построение функции для ВВ51


Схема 9. Построение функции для ВИ53

Схема 10. Построение функции для ВН59

Схема 11. Построение функции для ВВ79


В качестве анализа четырех старших разрядов шины адреса можно использовать дешифратор двоично-десятичный, который получив двоичный код на входе активирует выход с соответствующим номером.

Выходы дешифратора для каждой микросхемы объединяем функцией И.

Схема 12. Построение с помощью дешифратора.


3. Структурная схема.


Таблица 16. Перечень элементов структурной схемы

№ п/пОбозначениеТип элементаТип микросхемы
1ТГГенератор тактовых импульсовКР580ГФ24
2ЦПЦентральный процессорКР580ВМ80
3ДШАДешифратор адреса
4ОЗУОперативное запоминающее устройствоК537РУ17
5ПЗУПостоянное запоминающее устройствоК573РФ6
6СКСистемный контроллерКР580ВК28
7ПКППрограммируемый контроллер прерыванияКР580ВН59
8ПИПрограммируемый последовательный интерфейсКР580ВВ51
9ТПТаймерКР580ВН53
10ККДКонтроллер клавиатуры и дисплеяКР580ВВ79
11ДССхема управления дисплеемК514ИД2

Структурная схема определяет основной состав изделия, его назначение и взаимосвязь.

Тактовый генератор (ТГ) формирует сигнал системного сброса RESET для установки ЦП и других устройств в начальное состояние, а так же импульсы для синхронизации работы устройств. Своими сигналами генератора тактовых импульсов обеспечивает требуемую последовательность работы всех устройств микропроцессорной системы.

Микропроцессор формирует адресную шину ША мультиплексированную шину данных ШД с шиной управления ШУ. Для увеличения нагрузочной способности шины адреса используется буферный регистр.

Демультиплексирование осуществляет системный контроллер СК, формируя на своих выходах шину данных ШД и управляющие сигналы.

Выборку микросхем памяти ОЗУ и ПЗУ, в зависимости от состояния адресных линий ША, осуществляет дешифратор ДС.

Микропроцессорная система содержит контроллер последовательного интерфейса, передатчики и приемники, которые синхронизируются независимо друг от друга сигналами от интервального таймера ПТ. Контроллер последовательного интерфейса занимает две линии прерывания, которые обслуживают контроллер прерываний ПКП.

При поступлении прерывания контроллер ПКП формирует сигнал микропроцессору, а тот в свою очередь, если прерывания разрешены, формирует сигнал.

Функции ввода с клавиатуры и отображения информации на индикаторах обеспечивает контроллер ККД.

Таблица 17. Состав принципиальной схемы.

МикросхемаОбозначение на схеме
1КР580ВМ80DD1
2КР580ГФ24DD2
3К1533АП5DD3, DD4
4КР580ВК28DD5
5К573РФ5DD7
6К155ЛН1DD8
7КР537РУ17DD9
8К155ИД3DD10
9КР580ВВ51DD17
10КР580ВВ79DD18
11К155ЛИ6DD22
12К514ИД2DD25,
13CD8-BW30R6-A11HL1
14Разъем последовательного интерфейсаXC4

Центральное процессорное устройство включает в себя микропроцессор ВМ80 в минимальном окружении дополнительных микросхем:

1) Тактовый генератор ГФ24, который синхронизируется кварцевым резонатором с частотой 18 МГц. Вход RDYIN подключен через сопротивление 1 кОм для формирования высокого уровня на этом выходе. Вход RESIN подключен к кнопке с нормально разомкнутыми контактами, RC цепь предназначена для формирования сигнала RESET в момент включения МПС и для защиты от дребезга контактов кнопки. В цепь кварцевого резонатора включена емкость 20 нФ для запуска генератора в момент подачи напряжения.

2) Буферные регистры АП5 предназначены для увеличения нагрузочной способности шины адреса (SystemAddressBus) микропроцессора.

3) Системный контроллер ВК28 формирует на своих выходах системную шину данных (SystemDataBus) и шину управления (SystemControlBus). Его входы STSTB, HLDA, WR, DBIN подключены к соответствующим выходам микропроцессора и тактового генератора. Вход BUSEN заземлен.

К сформированным шинам подключаются остальные контроллеры, а также модули памяти ПЗУ и ОЗУ. Выборку контроллеров осуществляют дешифраторы DD10, DD11.

В проектируемой МПС обслуживание прерываний осуществляет один контроллер ВН59. Он подключается к 8-разрядной системной шине данных (ШД), а также к шине управления (ШУ). Для адресной выборки внутренних регистров используется линия адреса А0 от шины адреса (ША). К входам IR0-IR7 подключаются контроллеры, которым необходимы прерывания. Так как каскадирования не требуется, поэтому инверсный вход SP/EN заземляется.

Формирование трех 8-битных двунаправленных интерфейса PortA, B, C осуществляет контроллер ВВ55. Его выводы подключаются к соответствующим линиям ШД, ША, ШУ. Данный контроллер работает в режиме M1, поэтому линии PA0-7 и PB0-7 работают ввод и вывод соответственно, а линии PC0-7 используются для управляющих сигналов.

Функции ввода с 128-клавишной клавиатуры и отображения информации на одном 8-разрядном цифровых дисплеях HL1 выполняет контроллер ВВ79. Для сканирования клавиатуры контроллер формирует двоичный код на линиях SL0-SL3, анализируя при этом состояние линий RL0-RL7. Преобразование двоичного кода в кодовые последовательности М0-М15 выполняет дешифратор столбцов DD24, DD27. Выходы этих дешифраторов подключены к разрядам 7-сегментных индикаторов, а также к линиям клавиатуры. Непосредственное управление индикаторами с общим анодом осуществляют дешифраторы К514ИД2, преобразующие двоичный код с линий PA0-PA2, PB0-PB2 в 7-сегментный код. Линии PA3, PB3 подключены напрямую на вывод H индикаторов, который относится к светодиоду десятичной точки. Вход S подключается к выходу BD контроллера для гашения индикаторов.


Заключение

В данном курсовом проекте была получена МПС на базе комплекта КР580. Данная МПС обладает относительно небольшим быстродействием. Она позволяет решать задачи, связанные с управлением разнообразными технологическими операциями. Разработанная система позволяет подключать устройства, которые требуют динамического изменения временных и частотных характеристик их входных сигналов. Присутствие в этой МПС программируемого параллельного интерфейса КР580ВВ55 предусматривает три канала, к которым можно подключать УВВ, обменивающихся 8-разрядными словами, а также позволяет гибко манипулировать этими каналами, изменяя их предназначение. КР580ВМ80 является микропроцессором с фиксированным набором команд, что облегчает составление программ. Объем ПЗУ позволяет записать достаточно функциональную программу, расширяя тем самым возможности данной МПС.

Список используемой литературы

1. Большие интегральные схемы запоминающих устройств: Справочник. – М.: Радио и связь, 1990.

2. Калабеков Б.А.. “Цифровые устройства и микропроцессорные системы”. Москва 2003г.

3. Г. И. Пухальский. “Проектирование микропроцессорных систем”. Санкт-Петербург 2001г.

4. Справочник, М.: Редакция, 1991 – 196 c. Интегральные микросхемы зарубежных стран и их аналоги производства СССР.

5. Интернет-сайт: http://www.computer-museum.ru.

6. Интернет-сайт: http://www.wikipedia.org.ru


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно