Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Спроектировать двенадцатипульсный составной управляемый выпрямитель с параллельным включением вентилей

Тип Реферат
Предмет Коммуникации и связь
Просмотров
985
Размер файла
166 б
Поделиться

Ознакомительный фрагмент работы:

Спроектировать двенадцатипульсный составной управляемый выпрямитель с параллельным включением вентилей

Министерство науки и образования Украины

Донбасская государственная машиностроительная академия

Кафедра автоматизации производственных процессов

Расчетно-пояснительная записка

к курсовой работе по дисциплине

«Электроника и микросхемотехника»

Спроектировать двенадцатипульсный составной управляемый выпрямитель с параллельным включением вентилей

г.Краматорск

2005


Исходные данные

Силовая схема выпрямителя:

- номер рисунка: 1.8.б

- напряжение питания: Uc=660В

- напряжение на нагрузке: Ucp=260В

- ток нагрузки: Icp=80А

- глубина регулирования: Д=25

- рекомендуемая схема СИФУ: рис. 1.16


Реферат

Курсовая работа содержит 26 страниц, 11 иллюстраций, 1 приложение и 1 чертеж (принципиальная электрическая схема управляемого выпрямителя в сборе).

Объектом разработки является двенадцатипульсный составной управляемый выпрямитель с параллельным включением вентилей.

Целью курсовой работы является расчет элементов управляемого выпрямителя, системы импульсно-фазового управления на операционных усилителях, источника питания СИФУ, а так же проектировка принципиальной электрической схемы управления реверсивного выпрямителя.

Проектирование управляемого выпрямителя предполагает проектировку сначала силовой части (вентильного выпрямителя), а затем системы управления выпрямителем (СИФУ и источника питания).

Т.к. в выпрямителе используется 12 тиристоров, то для управления каждым предназначается многоканальная система импульсно-фазового регулирования. Функциональные схемы СИФУ одинаковы, но отличаются фазами синхронизирующих напряжений (они сдвинуты на 120 градусов так же, как и в соответствующих анодных цепях тиристоров).

Источником питания каждой СИФУ является параметрический стабилизатор напряжения. Спроектированная принципиальная схема управления выпрямителем требует больших аппаратных затрат, однако проста в сборке, управлении и наладке, предполагает возможность модификации, а так же обладает высокой надёжностью в работе, может применяться в различных областях.

Ключевые слова:

схема, выпрямитель, диод, тиристор, оптопара, СИФУ, стабилизатор.


Содержание

1. Расчет схемы управляемого выпрямителя

1.1 Выбор схемы и расчет основных параметров выпрямителя

1.2 Основные параметры выпрямителя в управляемом режиме

1.3 Выбор элементов управляемого выпрямителя

1.4 Расчет регулировочной характеристики управляемого выпрямителя

1.4 Выбор защиты тиристоров от перегрузок по току и напряжению

2. Проектирование СИФУ

2.1 Расчет параметров пусковых импульсов

2.2 Расчет цепи управления тиристорами

2.3 Расчет выходного каскада СИФУ

2.4 Расчет входного каскада СИФУ

2.6 Расчет разделительной цепи

2.7 Расчет схемы сравнения

2.8 Расчет схемы подавления помех

3. Расчет источника питания

3.1 Выбор схемы и расчет основных параметров источника питания

3.2 Расчет однофазного мостового выпрямителя и трансформатора

4. Моделирование силовой части

Выводы

Приложение А

Список литературы


Введение

Цель данной курсовой работы — спроектировать управляемый выпрямитель и систему импульсно-фазового управления для него.

Выпрямитель — устройство, преобразующее переменный ток в постоянный. Он состоит из трансформатора, преобразующего напряжение питающей цепи в требуемое по величине; вентильного блока, преобразующего переменное напряжение в пульсирующее; сглаживающего фильтра, уменьшающего (сглаживающего) пульсации выпрямленного напряжения до требуемой для нормальной работы потребителя величины. В данной курсовой работе рассматривается трехфазный полностью управляемый выпрямитель, построенный на использовании управляемых вентилей (тиристоров), и представляющий собой параллельное соединение двух трехфазных выпрямителей. В таком выпрямителе используется трансформатор с тремя обмотками. Вторичных обмоток две: одна соединяется звездой, а вторая — треугольником. Сглаживающие фильтры выполнены на основе дросселей.

Для управления тиристорами, использующимися в данном выпрямителе, используется система импульсно-фазового управления. Такой способ управления мощными тиристорами в настоящее время считается наиболее приемлемым. Суть способа состоит во включении запертых тиристоров почти положительными прямоугольными импульсами, подаваемыми на управляющий электрод тиристора сдвинутыми по фазе на угол α относительно момента естественного включения неуправляемых вентилей. Таким образом, основной задачей системы импульсно-фазового управления является преобразование входного регулирующего напряжения в соответствующий угол регулирования α (т.е. угол открытия тиристоров). Так как в данном выпрямителе используется 12 тиристоров, то для управления ими используется многоканальная система импульсно-фазового управления. При этом схемы всех каналов одинаковы и отличаются только фазами синхронизирующих напряжений, которые сдвинуты по фазе относительно друг друга, как и в соответствующих анодных цепях тиристоров. Каждое напряжение синхронизации синхронизирует начало рабочего интервала изменений угла α с точкой 0 естественного включения соответствующего тиристора.

Для питания схемы системы импульсно-фазового управления используется стабилизированный источник питания с CRC-фильтром.


1. Расчет схемы управляемого выпрямителя

1.1 Выбор схемы и расчет основных параметров выпрямителя

В соответствии с заданием принимаем схему двенадцатипульсного составного управляемого выпрямителя с параллельным включением вентилей.

Рис.1.1 — Двенадцатипульсный составной управляемый выпрямитель с параллельным включением вентилей

В начале расчет проводим в неуправляемом режиме, т.е. при . В связи с тем, что напряжение сети может колебаться в пределах , определим величины выпрямленных напряжений на нагрузке:


где выпрямленное напряжение на нагрузке при нормальном напряжении сети;

выпрямленное напряжение при повышенном напряжении сети.

Из прил.2 определяем:

— максимальное обратное напряжение на тиристорах;

— среднее значение тока тиристора.

Определяем активное сопротивление фазы трансформатора:

,

где

— коэффициент, зависящий от схемы выпрямления

B — магнитная индукция в магнитопроводе

S — число стержней магнитопровода для трансформаторов

Определяем индуктивность рассеяния обмоток трансформатора:

,

где .

Определяем напряжение холостого хода с учетом сопротивления фазы трансформатора и падения напряжения на дросселе :


где — число пульсаций в кривой выпрямленного напряжения за период сети.

— падение напряжения на тиристорах;

— падение напряжения на дросселях; .

Напряжение на вторичных обмотках трансформатора .

Действительный ток вторичной обмотки .

Коэффициент трансформации для обмоток «треугольник-треугольник» коэффициент трансформации для обмоток «треугольник-звезда» тогда действительный ток первичной обмотки трансформатора

Действительное значение тока тиристора

Типовая мощность трансформатора:

Определяем угол коммутации:

.

Определяем минимально допустимую индуктивность дросселя фильтра:


.

Внутреннее сопротивление выпрямителя:

.

КПД выпрямителя:

— коэффициент полезного действия трансформатора;

— потери мощности на выпрямительных диодах;

N — число тиристоров в схеме.

1.2 Основные параметры выпрямителя в управляемом режиме

Определяем максимальный и минимальный углы регулирования:

Минимальное напряжение на нагрузке


В управляемом режиме работы выпрямителя находим:

Минимальный и максимальный углы проводимости тиристоров:

Ток в тиристоре

Максимальное обратное напряжение

1.3 Выбор элементов управляемого выпрямителя

Тиристоры выбираем по : тиристор Т242-80-8 и типовой охладитель М-6А.

1.4 Расчет регулировочной характеристики управляемого выпрямителя

Общая расчетная формула для всего семейства нагрузочных характеристик:


Рис.1.2 — Регулировочная характеристика выпрямителя

1.4 Выбор защиты тиристоров от перегрузок по току и напряжению

Для защиты тиристоров от перегрузок используем быстродействующие плавкие предохранители. Достаточно поставить два предохранителя в первичной обмотке для обеспечения защиты.

Ток плавкой вставки:

Выбираем плавкую вставку ПНБ-5-380/100.

Для ослабления перенапряжений используем -цепочки, которые включаются параллельно тиристору. Такая цепочка совместно с индуктивностями цепи коммутации образует последовательный колебательный контур. Конденсатор ограничивает перенапряжения, а резистор — ток разряда этого конденсатора при отпирании и предотвращает колебания в последовательном контуре. Параметры цепочек определим по следующим соотношениям:

Величина напряжения на конденсаторе ток разряда контура

Мощность рассеяния на резисторе

По справочнику выбираем конденсаторы C2 — КСЛ-310 пФ, резисторы R2 — ПЭВ-100-620±10%.

Рис.1.3 — Схема управляемого выпрямителя с защитой


2. Проектирование СИФУ

2.1 Расчет параметров пусковых импульсов

Определяем требуемую длительность импульса управления , исходя из знания угла коммутации , определенного при расчете силовых схем:

2.2 Расчет цепи управления тиристорами

Для тиристоров Т242-80-8 определяем токи и напряжения управления:

Цепи управления тиристорами питаются от импульсного усилителя через оптрон и ограничивающие сопротивление и шунтирующий диод:

Рис.2.1 — Цепь управления тиристором

По значению выбираем оптрон ТО125-12,5 с параметрами:

Определяем параметры элементов, входящих в цепь управления:

По току выбираем шунтирующий диод типа КД202А.

По значениям и выбираем резистор типа МЛТ-1-11Ом±5%.

Внутреннее сопротивление управляющего перехода тиристора

2.3 Расчет выходного каскада СИФУ

Нагрузкой выходного каскада на транзисторе VT2 является ток управления оптотиристора (рисунок 2.2). Следовательно, в режиме насыщения через транзистор VT2 должен протекать ток коллектора не менее тока управления оптотиристора.

В связи с этим принимаем . Так как СИФУ питается двухполярным напряжением, то выходной каскад подключен на напряжение

.

Учитывая, что имеем:

.


По напряжению и току выбираем транзистор VT2 типа КТ611А с параметрами , , , .

Рисунок 2.2 — Выходной каскад СИФУ

Определяем величину ограничивающего сопротивления резистора R13:

где - падение напряжения на открытом транзисторе,

- падение напряжения на светодиоде оптотиристора.

Определяем мощность рассеивания на резисторе :

Принимаем резистор типа МЛТ-2-240Ом±10%.

Определим ток базы транзистора VT2:


Определяем ток коллектора транзистора VT1:

Вычисляем мощность рассеяния на транзисторе VT1:

.

По току , напряжению и мощности рассеивания выбираем транзистор VT1 типа КТ301Б с параметрами:

Определим минимальный ток базы транзистора VT1:

2.4 Расчет входного каскада СИФУ

Входной каскад СИФУ выполняет две функции: функцию синхронизации и функцию генератора прямоугольных импульсов. Функция синхронизации импульсов управления и анодного напряжения оптотиристора в управляемом выпрямителе осуществляется путём подключения входного трансформатора TV1 и силового трансформатора к одной и той же фазе напряжения сети. В исходной схеме прямоугольные двухполярные импульсы образуются на стабилитронах VD1, VD2 (рисунок 2.3).



Рисунок 2.3 — Схема образования прямоугольных двухполярных импульсов.

Для получения импульсов, близких к прямоугольным, на стабилитронах VD1 и VD2 должно выполняться условие:.

Принимаем:

Выбираем из справочника стабилитроны VD7, VD8 типа КС133А с

параметрами:,

а также принимаем к установке трансформатор со следующими параметрами:

.

Определяем величину сопротивления ограничительного резистора R7:

Находим мощность рассеивания на резисторе R7:


Принимаем резистор R7 типа МЛТ-1-270Ом ±5%.

2.5 Расчет генератора треугольных импульсов

Генераторы треугольных импульсов (рисунок 2.4) реализуются на базе генератора прямоугольных импульсов и интегратора. Параметры импульсов:

амплитуда:

частота:

Определим длительность входных импульсов:

.

Определим ток нагрузки входного каскада и входной ток интегратора из того условия, что:

По справочнику выбираем операционный усилитель DA1 типа К153УД5 с параметрами:

При подаче на вход интегратора постоянного напряжения на его выходе

получаем линейно изменяющееся напряжение:


где .

Принимаем: тогда:

.

Исходя из того, что значение очень мало, принимаем:

резисторы R8, R9 типа МЛТ-0,125-100кОм ±10% ,

конденсатор С7 типа К73-5-0,1мкФ ±5%.

Величина выходного напряжения на выходе интегратора составит:

,

где- входное напряжение ограничителя.


Рисунок 2.4 – Генератор треугольных импульсов


2.6 Расчет разделительной цепи

Разделительная цепь С8, R10 (рисунок 2.5) выполняет две функции: разделяет постоянные составляющие напряжений и уменьшает дрейф операционных усилителей.

Постоянная времени разделительной цепи равна:

и выбирается исходя из условия минимального искажения выходного сигнала:

.

Величина сопротивления резистора R10 по условиям разряда конденсатора не должна быть меньше величины сопротивления резистора R8.

Принимаем: постоянную времени разделительной цепи , а величину сопротивления резистора R10=R8=100(кОм). Тогда величина емкости конденсатора С8 составит:

.

Выбираем конденсатор С8 типа К73-5-1мкФ±10%.

Резисторы R10 типа МЛТ-1-100кОм±10%.



Рисунок 2.5 - Разделительная цепь

2.7 Расчет схемы сравнения

В качестве схемы сравнения напряжения питания Uп и напряжения регулирования Uр (оно же напряжение управления Uу) используем нелинейный режим работы операционного усилителя. Передаточная характеристика операционного усилителя содержит участок положительного и отрицательного насыщения в зависимости от величин входных напряжений на входах: Uвх1, Uвх2. Поскольку коэффициент усиления КUоу очень велик, то напряжение переключения (Uвх1 - Uвх2) весьма мало. Выходное напряжение операционного усилителя при ½ Uвх1 - Uвх2 ½> Uпер зависит от того, какое из входных напряжений больше, т.е. операционный усилитель является схемой сравнения напряжений (рисунок 2.6).

Учитывая, что:

напряжение регулирования Up = UВХ1 = ± 3,3(В),

амплитуда треугольного напряжения Uп = UВХ2 = ± 3,3(В),

максимальный ток нагрузки IН=IБ1=0,0008(А),

минимальное выходное напряжение Uн min = UБЭ1 = 3(В),

принимаем в качестве схемы сравнения операционный усилитель DA2 типа К153УД5 у которого:

Uвых.max=10(B), Iвых.мах=5(мА), Rвых.оу=150(Ом); Коу=125*10 3.



Рисунок 2.6 — Схема сравнения СИФУ

Определим напряжение переключения операционного усилителя:

Величина сопротивления резистора R* определяется из соотношений:

R*>Rвых.оу=150(Ом);

Принимаем резистор R* типа МЛТ-0,125-2,4кОм±10%.

Величины сопротивлений резисторов R11=R12 определим из следующих условий:

Принимаем резисторы R11, R12 типа МЛТ-0,5-2,7мОм±10%

Величину сопротивления резистора R13 (делителя напряжения) определим, если примем, что ток делителя напряжения Iд=(5…10)Iвх.оу.


Исходя из этого, принимаем резистор R13 типа СП-0,15-2,4(мОм)±20%.

2.8 Расчет схемы подавления помех

В данной схеме (рисунок.2.7) резисторы R14, и R15 являются разрядными и в тоже время выполняют роль делителя напряжения Еп. Обычно ток делителя принимаютв 10 раз меньше тока потребления, т.е. 10 Iд = Iпотр.


Рисунок 2.7– Схема подавления помех

Ток потребления СИФУ составит:

Ток делителя через резисторы R14 и R15 составит:


Величина резистора R14 определяется из условий:

Принимаем резисторы R14 и R15 типа МЛТ-0,5-1600Ом±5%.

Ёмкость конденсатора определим по следующей формуле:

Тогда:

Из справочника принимаем конденсаторы С9 и С10 типа К73-5-0,3мкФ±5% .


3. Расчёт источника питания

3.1 Выбор схемы и расчет основных параметров источника питания

Для выбора схемы источника питания рассчитаем суммарный ток нагрузки:

,

где - ток нагрузки,

- общий ток потребления СИФУ (в схеме их 12 штук, подключённых параллельно к стабилизатору).

Зная ток нагрузки и напряжение нагрузки примем в качестве схемы стабилизатора схему параметрического стабилизатора напряжения (рисунок 3.1) .


Рисунок 3.1 – Схема источника питания

По справочнику по известному току нагрузки выбираем 2 стабилитрона Д815В со следующими параметрами:


Следует отметить, что в схеме стабилитроны VD7 и VD8 ставятся последовательно для обеспечении стабилизации нужного напряжения и в сумме дают необходимое напряжение (одного не хватает).

Рассчитаем параметрический стабилизатор исходя из следующего из условия: .

Воспользуемся следующей формулой:

где - выходное напряжение,

- минимальный ток стабилитрона,

- максимальный ток стабилитрона,

- балансное сопротивление;

- сопротивление нагрузки;

- входное напряжение.

Определяем и из уравнений приведенных выше учитывая то, что напряжение сети может колебаться в пределах +0,05 U1...-0,15 U1:

Решив данную систему уравнений, получим:


Таким образом, минимальное и максимальное напряжения принимают следующие значения:

Для выбранных и определим минимальный и максимальный токи стабилизации:

Определяем мощность рассеяния на резисторе RБ:

По справочнику выбираем:

Резистор RБ типа ПЭВ-18-27Ом±10%.

конденсатор С11 типаК50-6-100 мкФ±5%.

конденсатор С12 типа К50-6-1000 мкФ±5%.

3.2 Расчёт однофазного мостового выпрямителя и трансформатора

Найдём величину выпрямленного напряжения:

Определим анодный ток на диодах:


Определим максимальное обратное напряжение на диодах:

Необходимо учесть, что из-за использования фильтра максимальное обратное напряжение на диодах примет удвоенное значение:

По справочнику выбираем диоды VD11-VD14 типа КД226В с параметрами:

Определим основные параметры силового трансформатора:

-напряжение на вторичной обмотке:

-ток на вторичной обмотке:

-типовая мощность трансформатора:

-коэффициент трансформации трансформатора:


-ток первичной обмотки трансформатора:


Выводы

Большим преимуществом двенадцатипульсного выпрямителя является маленький коэффициент пульсации и получение большой выходной мощности. Таким образом, применение такого выпрямителя дает практически выпрямленный ток на выходе.

Подобные выпрямители получили широкое распространение в различных отраслях промышленности, например, в электролизных установках, на железнодорожном транспорте для питания двигателей постоянного тока, заряда аккумуляторных батарей, в сварочных аппаратах и дуговых печах, электрофильтрах, источниках вторичного электропитания радиоэлектронной аппаратуры и др.


Приложение А

Поз.НаименованиеКоличествоПримечание
Выпрямитель
TV1ТПП1
VS1-VS12Т242-80-812
C2КСЛ-310пкФ±10%12
R2ПЭВ-100-620±10%12
FU1-FU3ПНБ-5-660/1002
Блок С1 — СИФУ12
VT1КТ301Б12
VT2КТ611А12
R0МЛТ-1-11Ом±5%12
R7МЛТ-1-270Ом±5%12
R8, R9МЛТ-0,125-100кОм±10%24
R10МЛТ-1-100кОм±10%12
R11, R12МЛТ-0,5-2,7мОм±10%24
R13СП-0,15-2,4мОм±20%12
VD1КД202А12
VD7, VD8КС133А24
C7К73-5-0,1мкФ±5%12
C8К73-5-1мкФ±10%12
C9, C10К73-5-0,3мкФ±5%24
КД202А12
DA1-DA2К153УД524
UlТО125-12,512
TV2ТПП12

Поз.

НаименованиеКоличествоПримечание
Блок A1 — Блок питания СИФУ1
C1К5016-3000мкФ-25В±10%3
C2К5016-3000мкФ-25В±10%3
R1МЛТ-1-23±10%3
R2МЛТ-0,25-6кОм±10%3
R3МЛТ-1-1кОм±10%3
R4МЛТ-0,25-4кОм±10%3
R5МЛТ-0,25-1,5кОм±10%3
R6МЛТ-0,25-570±10%3
R7МЛТ-0,25-2кОм±10%3
VT1ГТ403А3
VT2П2143
VT3МП393
TV1ТПП3
VD5Д8113

Список литературы

1. Приборы и устройства промышленной электроники / В.С. Руденко, В.И. Сенько, В.В. Трифонюк (Б-ка инженера). — К.:Техника, 1990. — 368 с.

2. Полупроводниковые приемно-усилительные устройства: Справочник радиолюбителя / Терещук Р.М., Терещук К.М. — К.:Наукова думка, 1981. — 670 с.

3. Тиристоры: справочник / Григорьев О.П., Замятин В.Я. — М.: Радио и связь, 1982. —272 с.

4. Транзисторы для аппаратуры широкого применения: справочник / Перельман В.П. — М.:Радио и связь, 1982 — 520 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно