Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Разработка печатного модуля РЭС с использованием учебных алгоритмов САПР

Тип Реферат
Предмет Коммуникации и связь
Просмотров
559
Размер файла
82 б
Поделиться

Ознакомительный фрагмент работы:

Разработка печатного модуля РЭС с использованием учебных алгоритмов САПР

Министерство образования Республики Беларусь

Белорусский государственный университет информатики и радиоэлектроники

Факультет компьютерного проектирования

Кафедра радиоэлектронных средств

Пояснительная записка

к курсовому проекту

по предмету: «Автоматическое конструирование и технология проектирования РЭС»

на тему:

«Разработка печатного модуля РЭС с использованием учебных алгоритмов САПР»

Выполнил:

студент группы 810202

Воронович А.В.

Минск 2000

Содержание

Введение

1. Решение задачи компоновки для функциональной схемы с использованием последовательного алгоритма

1.1 Общее описание алгоритма

1.2 Пошаговое описание алгоритма

1.3 Выполнение компоновки

2. Размещение элементов в принципиальной электрической схеме с использованием последовательного алгоритма

2.1 Краткое описание алгоритма последовательной установки элементов РЭА

2.2 Выполнение размещения

2.3 Результаты размещения

3. Трассировка цепей питания и земли с использованием алгоритма построения кратчайших связывающих сетей и волнового алгоритма

3.1 Краткое описание алгоритма Краскала

3.2 Трассировка цепей земли по алгоритму Краскала

3.3 Трассировка цепей питания по алгоритму Прима

4. Трассировка сигнальных цепей с помощью волновых алгоритмов

Заключение

Список используемой литературы

Введение

Стремление разработать эффективные методы конструирования РЭА, позволяющие обобщить опыт работы высоко квалифицированных конструкторов и сделать их достаточно универсальными, приводит к необходимости формализации процесса конструирования.

Разработанная обобщённая модель конструкции РЭА подвергается тщательным исследованиям с точки зрения удовлетворения параметров конструкций заданным техническим требованиям.

Успешное решение формализации конструкторской деятельности возможно лишь только при её алгоритмизации и автоматизации с использованием математических методов, теории графов, алгоритмов, математического программирования и исследование операции, методов вычислительной математики.

Следует отметить, что в общем случае процессы конструирования РЭА плохо поддаются формализации и с математической точки зрения относятся к так называемым плохо формализуемым задачам. Тем не менее для широкого круга задач удалось найти математическое описание и на его основе построить алгоритмы и программы их решения на ЭВМ.

В настоящее время на основе современных вычислительных комплексов и средств автоматизации созданы и находятся в промышленной эксплуатации схемы автоматизированного проектирования РЭА и ЭВА, позволяющие в значительной степени освободить конструктора-проектировщика от однообразной, трудоёмкой и утомительной умственной работы и повысить его интеллектуальные возможности на этапах принятия решений.

Существующие системы автоматизированного проектирования РЭА решают комплекс вопросов по проектированию схем и конструкций аппаратуры.

Нам необходимо разработать печатный модуль РЭС с использованием учебных алгоритмов САПР.

1. Решение задачи компоновки

1.1 Общее описание алгоритма

Общая схема процесса последовательной компоновки по связности имеет следующий вид:

Пусть дана схема соединения элементов из множества . Определим последовательный процесс назначения элементов в узлы Br(), на каждом шаге которого выбирается один из неразделенных элементов и приписывается очередному узлу.

Узел считается завершенным, если число элементов в узле равно заданному числу K.

После завершения очередного узла аналогичная процедура повторяется для следующего узла, причем кандидатами для назначения являются элементы, не включенные в предыдущие узлы. Процесс заканчивается, когда все элементы из множества E распределены.

Исходные данные являются:

– электрическая схема устройства (Рис.1);

– максимально допустимое число элементов в модуле.

Электрическую схему удобно представлять графом G=(E,V), где множество вершин Е соответствует элементам электрической схемы, а множество ребер V –электрическим связям между элементами.

В таком виде задача компоновки может быть сформулирована как задача разрезания графа

G=(E,V) на множество подграфов

Gr = (Er, Vr),

где r=1, 2, 3….

В каждом подграфе число вершин соответственно Er должно не превосходить ранее заданного ограничения на число элементовв в узле К. Для любого разбиения должны выполняться следующие условия:


(1)

Рис.1

При проведении компоновки без учета ограничения на кол-во внешних выводов в узле все модули, кроме последнего, будут иметь полное заполнение и последнее условие примет вид

(2)

1.2 Пошаговое описание алгоритма

Шаг 1.

Формирование очередного подграфа Gr(r=1,2,3…) начинается с выбора базовой вершины из множества нераспределенных вершин Ir. В начале процесса все вершины считаются нераспределенными, т.е. Ir=E.

Критерием выбора вершины на роль базовой является ее степень () (под степенью вершины графа будем понимать кол-во ребер данного графа, инцидентных ей). Выбор происходит в соответствии со следующим условием:

(3)

Базовая вершина будет первой по порядку вершиной подграфа Gr(Er,Vr), а оставшиеся вершины, принадлежащие множеству , являются кандидатами для включения в подграф Gr на последующих шагах алгоритма.

Базовая вершина является, во-первых, как бы “центром” группирования, к которому прибавляются новые вершины, во-вторых, центром факторизации.

Шаг 2.

Из множества выделяется подмножество Г () вершин, связанных с .

Шаг 3.

Для элемента X введем функционал:

L(x)= (4)

определяющий число цепей, связывающих вершину X и вершины из множества Г и Ir.

Для упрощения записей будем отождествлять элемент (множество элементов). Для формального вычисления функционала будем пользоваться формулой:

(5)

где – число связей между вершинами и .

Шаг 4.

Из всех вершин выбирается такая, у которой значение функционала минимально. Очевидно, что вершина, для которой это условие будет выполняться, максимально связана с . Эта вершина включается во множество Еr вершин Gr.

Множество вершин подграфа Gr приобретает следующий вид:

(6)

где , а верхний индекс в обозначении в общем случае указывает кол-во шагов выборки.

Шаг 5.

Происходит стягивание вершин подграфа Gr в вершину . Этот процесс далее будем называть факторизацией, вершину – центром факторизации, а количество вершин стянутых в , кроме него самого, – степенью факторизации.

Центр факторизации со степенью факторизации , отличной от нуля, будем обозначать символом и называть гипервершиной степени .

После данного процесса множество преобразуют в одноэлементное множество содержащее гипервершину степени .

В указанных обозначениях первый процесс факторизации запишется следующим образом:

. (7)

В общем случае на ом шаге выборки все указанные преобразования будут иметь вид:

. (8)

=1,2,3…,Кс-1,где Кс –допустимая мощность множества вершин формируемого подграфа (кол-во элементов в конструктивном узле).

Шаг 6.

Действия, описанные в шагах 2,3,4,5, повторяются до полного заполнения формируемого модуля.

Далее весь процесс повторяется до тех пор, пока не будет сформирован (-1) модуль. Последний же –й полностью включает в себя множество , так как

. (9)

1.3 Выполнение компоновки

Данную электрическую функциональную схему распределителя уровней на 10 каналов (рис. 1) разбиваем на 3 блока. Далее выполняем компоновку для каждого блока, для чего представляем их в виде графов, где множеству вершин соответствуют элементы электрической схемы блока, а множество ребер электрическим связям между этими элементами.

1.3.1 Компоновка первого блока


В исходной схеме выделяем однотипные логические элементы. Сведём их в блок 1.

Рис. 2. Блок 1

По блоку 1 составляем граф.

По полученному графу составляем матрицу смежности.

Таблица 1

X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15
X10000111101101018
X20011011101100119
X30101110010011119
X40110000111101108
X51010011011101109
X61110101110010019
X71100110000111108
X81101010011011109
X90011110101110019
X101101100110000118
X111101101010001018
X120010011110001017
X131011101100110008
X140111101101000018
X151110010011110109

За базовую принимаем вершину X2, т.к. она имеет максимальное значение, равное 9, и минимальный порядковый номер. Она связана с вершинами X3, X4, X6, X7, X8, X10, X11, X14, X15. Посчитаем для этих вершин функционалы:

L(X1)=8-0=8, L(X3)=9-1=8, L(X4)=8-1=7, L(X5)=9-0=9,

L(X6)=9-1=8, L(X7)=8-1=7, L(X8)=9-1=8, L(X9)=9-0=9, L(X10)=8-1=7, L(X11)=8-1=7, L(X12)=7-0=7, L(X13)=8-0=8, L(X14)=8-1=7, L(X15)=9-1=8.

Стягиваем вершину X4 с базовой в первый корпус, т.к. она имеет минимальный функционал, равный 7, и минимальный порядковый номер.

Таблица 2

X1X3X5X6X7X8X9X10X11X12X13X14X15
X100111101101010
X300110010011112
X511011011101100
X611101110010011
X710110000111101
X810010011011102
X901110101110011
X1010100110000112
X1110101010001012
X1201011110001010
X1311101100110001
X1401101101000012
X1511010011110101
02011212201210

Стягиваем вершину X7 с X4 и с базовой в первый корпус, т.к. вершина X7 также имеет функционал равный 7.

Таблица 3

X1X3X5X6X8X9X10X11X12X13X14X15
X10011101101011
X30011010011112
X51101011101101
X61110110010012
X81001011011102
X90111101110011
X101010110000112
X111010010001013
X120101110001011
X131110100110002
X140110101000013
X151101011110101
1212212312310

Так как К155ЛА4 содержит три модуля, элементы X2, X4, X7 помещаем в одну микросхему. Для оставшихся несвязанных элементов будем продолжать компоновку.

Таблица 4

X1X3X5X6X8X9X10X11X12X13X14X15
X10011101101017
X30011010011117
X51101011101108
X61110110010017
X81001011011107
X90111101110018
X101010110000116
X111010010001015
X120101110001016
X131110100110006
X140110101000015
X151101011110108

За базовую принимаем вершину X5, т.к. она имеет максимальное значение, равное 8, и минимальный порядковый номер. Она связана с вершинами X1, X3, X6, X9, X10, X11, X13, X14. Посчитаем для этих вершин функционалы:

L(X1)=7-1=6, L(X3)=7-1=6, L(X6)=7-1=6, L(X8)=7-0=7, L(X9)=8-1=7, L(X10)=6-1=5, L(X11)=5-1=4, L(X12)=6-0=6, L(X13)=6-1=5, L(X14)=5-1=4, L(X15)=8-0=8.

Стягиваем вершины X11, X14 с базовой во второй корпус, т.к. они имеют минимальный функционал, равный 4.

Таблица 5

X1X3X6X8X9X10X12X13X15
X10011010112
X30010101112
X61101101011
X81010111101
X90111011012
X101001100012
X120111100110
X131101001002
X151110111002
2211220220

Так как К155ЛА4 содержит три модуля, элементы X5, X11, X14 помещаем в одну микросхему. Для оставшихся несвязанных элементов будем продолжать компоновку.

Таблица 6

X1X3X6X8X9X10X12X13X15
X10011010115
X30010101115
X61101101016
X81010111106
X90111011016
X101001100014
X120111100116
X131101001004
X151110111006

За базовую принимаем вершину X6, т.к. она имеет максимальное значение, равное 6, и минимальный порядковый номер. Она связана с вершинами X1, X3, X8, X9, X12, X15. Посчитаем для этих вершин функционалы:

L(X1)=5-1=4, L(X3)=5-1=4, L(X8)=6-1=5, L(X9)=6-1=5, L(X10)=4-0=4, L(X12)=6-1=5, L(X13)=4-0=4, L(X15)=6-1=5.

Стягиваем вершину X1, X3 с базовой в третий корпус, т.к. они имеют минимальный функционал, равный 4.

Таблица 7

X8X9X10X12X13X15
X80111102
X91011012
X101100011
X121100112
X131001002
X150111003
2212230

Так как К155ЛА4 содержит три модуля, элементы X1, X3, X6 помещаем в одну микросхему. Для оставшихся несвязанных элементов будем продолжать компоновку.

Таблица 8

X8X9X10X12X13X15
X80111104
X91011014
X101100013
X121100114
X131001002
X150111003

За базовую принимаем вершину X8, т.к. она имеет максимальное значение, равное 4, и минимальный порядковый номер. Она связана с вершинами X9, X10, X12, X13. Посчитаем для этих вершин функционалы:

L(X9)=4-1=3, L(X10)=3-1=2, L(X12)=4-1=3, L(X13)=2-1=1, L(X15)=3-0=3.

Стягиваем вершину X10, X13 с базовой в четвёртый корпус, т.к. они имеют минимальный функционал.

Таблица 9

X9X12X15
X90112
X121012
X151101
2210

Так как К155ЛА4 содержит три модуля, элементы X8, X10, X13 помещаем в одну микросхему.

Аналогично стягиванием оставшиеся вершины X9, X12, X15 в пятый корпус и помещаем в микросхему.

Выбираем микросхему К155ТВ1. В ней содержится только один модуль, поэтому процесс компоновки проводить не будем, а поместим каждый элемент первого блока в отдельную микросхему.

1.3.2 Компоновка второго блока

Второй блок состоит из пяти логических элементов 2И-НЕ, которые не связаны между собой. Поэтому четыре из них стягиваются в один корпус микросхемы К155ЛА3, а пятый в другой, т.к. микросхема К155ЛА3 содержит только 4 логических элемента.

1.3.3 Компоновка третьего блока

Третий блок состоит из одного JK-триггера, поэтому помещаем его в корпус микросхемы К155ТВ1, содержащей только один элемент.

В результате проведения процесса последовательной компоновки конструктивных узлов РЭА, получили схему электрическую принципиальную состоящую из пяти микросхем D2, D3, D4, D5, D6 типа К155ЛА4, двух микросхем D7, D8 типа К155ЛА3 и одной микросхемы D1 типа К155ТВ1. Схема электрическая принципиальная приведена в приложении 1. Перечень элементов к этой схеме в приложении 2.

По этой схеме построим граф (рис. 4).

Рис.4

2. Размещение элементов

2.1 Краткое описание алгоритма последовательной установки элементов РЭА

Алгоритм последовательной установки РЭА не требует первоначального размещения элементов. Сущность этого этапа состоит в последовательном закреплении элементов РЭА на монтажной плате относительно каких-либо ранее закрепленных элементов. При этом из числа не размещенных элементов выбирается тот элемент, для которого характеристика, связанная с длиной связи относительно ранее размещенных элементов, оказывается наилучшей. В качестве первоначально закрепленных на монтажной плоскости конструктивных элементов обычно выбирают разъемы. В связи с этим на монтажной плате первыми размещаются элементы, имеющие максимальное количество связей с разъемами.

Вся площадь платы разбивается координатной сеткой на отдельные ячейки, линейные размеры которых больше или равны установочным размерам элементов. Вершины графа, соответствующие разъему, отображаются на подмножество мест, расположенных на одном из краев монтажной платы. Очередная вершина выбирается по максимальному количеству связей с уже размещенными вершинами и помещаются в свободную соседнюю позицию или в такую позицию из числа свободных, которая обеспечивает минимальную длину связей между размещаемой вершиной и уже размещенными вершинами графа.

В качестве исходных данных необходимо ввести данные о модели монтажной платы, ограничения на расположения элементов, на расположение разъема, а так же данные о связях между размещенными элементами.

В качестве критерия выбора очередного элемента, подлежащего установке на плате, используется коэффициент относительной взвешенности связности:

, (10)

где –количество связей i-ого элемента с установленным ранее на

плате j-ым элементом, порядковый номер которого-m;

g – количество уже закрепленных на плате элементов;

– общее число связей i-ого элемента со всеми остальными

элементами множества X.

2.1.1 Последовательность работы алгоритма

Формируется массив номеров элементов и подготавливается (обнуляется) массив установочных мест.

Выбираем за исходное размещение местонахождение разъема и элементов, закрепляемых на установочных местах платы по требованию разработчика.

Во множестве размещаемых элементов, обнуляем элементы размещенные по требованию разработчика.

Выбираем из множества N ещё не размещенный элемент для которого значение Фi максимально. Если ряд элементов имеет одинаковое значение Фi, то выбираем элемент с минимальным порядковым номером.

Для множества незанятых позиций ряда определяем позицию, закрепление которой элемента Ni приводит к минимальному приращению функции цели

, (11)

где dij – элемент матрицы расстояний.

Общее суммарное расстояние от закрепляемого элемента к закрепленным будет минимальным. Проверяем, не является ли данная позиция областью, запрещенной для размещения элементов.

Производим закрепление элемента Ni за свободной позицией ряда, в которой обеспечивается минимальное приращение функции цели.

Проверяем все ли элементы размещены на плате, если нет, то процесс повторяется заново.

2.2 Выполнение размещения

По графу (рис.4) строим матрицу смежности и определяем степень каждой вершины

Таблица 10

D1D2D3D4D5D6D7D8X1
D10221200029
D220543361327
D325033641327
D414304261324
D523340452326
D603624022423
D706465200427
D80111220018
X123333441023

Составляем модель монтажной платы

Затем по модели монтажной платы составляем матрицу расстояний

Таблица 11

12345678910
10111222343
21012123234
31101212343
41210321432
52123014123
62212101212
72321410321
83234123012
94343212101
103432321210

2.2.1 В качестве первого размещенного элемента принимаем разьем X1 (позиция 1). Рассчитываем коэффициенты относительной взвешенной связности по формуле (10)

ФD1= 2/9 = 0,222, ФD2= 3/27 = 0,111, ФD3= 3/27 = 0,111, ФD4= 3/24 = 0,125,

ФD5= 3/26 = 0,115, ФD6= 4/23 = 0,174, ФD7= 4/27 = 0,148, ФD8= 1/8 = 0,125.

На данном этапе будем размещать элемент с максимальным значением , т.е. элемент DD1.

Рассчитываем приращение функции цели для незанятых ячеек печатной платы по формуле (11)

DF2 = 2*1 = 2, DF3 = 2*1 = 2, DF4 = 2*1 = 2, DF5 = 2*2 = 4,

DF6 = 2*2 = 4, DF7 = 2*2 = 4,DF8 = 2*3 = 6,DF9 = 2*4 = 8,DF10 = 2*3 = 6.

Выбираем минимальное значение из . Это соответствует 2,3 и 4 позициям. Выбираем позицию с минимальным номером, т.е. вторую.

2.2.2 В качестве размещенных элементов принимаем разьем X1 (позиция 1) и DD1 (позиция 2). Рассчитываем коэффициенты относительной взвешенной связности по формуле (10)

ФD2= (2+3)/27 = 0,185, ФD3= (2+3)/27 = 0,185,

ФD4= (1+3)/24 = 0,167, ФD5= (2+3)/26 = 0,192, ФD6= (0+4)/23 = 0,174,

ФD7= (0+4)/27 = 0,148, ФD8= (0+1)/8 = 0,125.

На данном этапе будем размещать элемент с максимальным значением , т.е. элемент DD5.

Рассчитываем приращение функции цели для незанятых ячеек печатной платы по формуле (11)

DF3 = 3*1+2*1 = 5,

DF4 = 3*1+2*2 = 7, DF5 = 3*2+2*1 = 8, DF6 = 3*2+2*2 = 10,

DF7 = 3*2+2*3 = 12,DF8 = 3*3+2*2 = 13, DF9 = 3*4+2*3 = 18,

DF10 = 3*3+2*4 = 17.

Выбираем минимальное значение из . Это соответствует позиции 3.

2.2.3 В качестве размещенных элементов принимаем разьем X1 (позиция 1), DD1 (позиция 2) и DD5 (позиция 3). Рассчитываем коэффициенты относительной взвешенной связности по формуле (10)

ФD2= (2+3+3)/27 = 0,296, ФD3= (2+3+3)/27 = 0,296,

ФD4= (1+4+3)/24 = 0,333, ФD6= (0+4+4)/23 = 0,348,

ФD7= (0+4+5)/27 = 0,333, ФD8= (0+1+2)/8 = 0,375.

На данном этапе будем размещать элемент с максимальным значением , т.е. элемент DD8.

Рассчитываем приращение функции цели для незанятых ячеек печатной платы по формуле (11)

DF4 = 1*1+0*2+2*1 = 3, DF5 = 1*2+0*1+2*2 = 6, DF6 = 1*2+0*2+2*1 = 4,

DF7 = 1*2+0*3+2*2 = 6,DF8 = 1*3+0*2+2*3 = 9, DF9 = 1*4+0*3+2*4 = 12,

DF10 = 1*3+0*4+2*3 = 9.

Выбираем минимальное значение из . Это соответствует позиции 4.

2.2.4 В качестве размещенных элементов принимаем разьем X1 (позиция 1), DD1 (позиция 2), DD5 (позиция 3), DD8 (позиция 4). Рассчитываем коэффициенты относительной взвешенной связности по формуле (10)

ФD2= (2+3+1+3)/27 = 0,333, ФD3= (2+3+1+3)/27 = 0,333,

ФD4= (1+4+1+3)/24 = 0,375, ФD6= (0+4+2+4)/23 = 0,435,

ФD7= (4+5)/27 = 0,333.

На данном этапе будем размещать элемент с максимальным значением , т.е. элемент DD6.

Рассчитываем приращение функции цели для незанятых ячеек печатной платы по формуле (11)

DF5 = 4*2+0*1+4*2+2*3 = 22, DF6 = 4*2+0*2+4*1+2*2 = 16,

DF7 = 4*2+0*3+4*2+2*1 = 18,DF8 = 4*3+0*2+4*3+2*4 = 32,

DF9 = 4*4+0*3+4*4+2*3 = 38, DF10 = 4*3+0*4+4*3+2*2 = 28.

Выбираем минимальное значение из . Это соответствует 6 и 7 позициям. Но позиция 6 запрещенная, поэтому выбираем позицию 7.

2.2.5 В качестве размещенных элементов принимаем разьем X1 (позиция 1), DD1 (позиция 2), DD5 (позиция 3), DD8 (позиция 4),

DD6 (позиция 7). Рассчитываем коэффициенты относительной взвешенной связности по формуле (10)

ФD2= (2+3+3+1+3)/27 = 0,444, ФD3= (2+3+6+1+3)/27 = 0,555,

ФD4= (1+4+2+1+3)/24 = 0,458,

ФD7= (5+2+4)/27 = 0,407.

На данном этапе будем размещать элемент с максимальным значением , т.е. элемент DD3.

Рассчитываем приращение функции цели для незанятых ячеек печатной платы по формуле (11)

DF5 = 3*2+2*1+3*2+1*3+6*4 = 41, DF6 = 3*2+2*2+3*1+1*2+6*1 = 21,

DF8 = 3*3+2*2+3*3+1*4+6*3 = 44, DF9 = 3*4+2*3+3*4+1*3+6*2 = 45,

DF10 = 3*3+2*4+3*3+1*2+6*1 = 34.

Выбираем минимальное значение из . Это соответствует 6 и 10 позициям. Но позиция 6 запрещенная, поэтому выбираем позицию 10.

2.2.6 В качестве размещенных элементов принимаем разьем X1 (позиция 1), DD1 (позиция 2), DD5 (позиция 3), DD8 (позиция 4), DD6 (позиция 7), DD3 (позиция 10). Рассчитываем коэффициенты относительной взвешенной связности по формуле (10)

ФD2= (2+5+3+3+1+3)/27 = 0,63,

ФD4= (1+3+4+2+1+3)/24 = 0,583,

ФD7= (4+5+2+4)/27 = 0,555.

На данном этапе будем размещать элемент с максимальным значением , т.е. элемент DD2.

Рассчитываем приращение функции цели для незанятых ячеек печатной платы по формуле (11)

DF5 = 3*2+2*1+3*2+1*3+3*4+5*3 = 44,

DF6 = 3*2+2*2+3*1+1*2+3*1+5*2 = 28,

DF8 = 3*3+2*2+3*3+1*4+3*3+5*2 = 45,

DF9 = 3*4+2*3+3*4+1*3+3*2+5*2 = 44.

Выбираем минимальное значение из . Это соответствует 6 позиции. Но позиция 6 запрещенная, поэтому выбираем позицию 5.

2.2.7 В качестве размещенных элементов принимаем разьем X1 (позиция 1), DD1(позиция 2), DD5(позиция 3), DD8(позиция 4), DD6(позиция 7), DD3 (позиция 10), DD2 (позиция 5). Рассчитываем коэффициенты относительной взвешенной связности по формуле (10)

ФD4= (1+4+3+4+2+1+3)/24 = 0,75,

ФD7= (0+6+4+5+2+0+4)/27 = 0,778.

На данном этапе будем размещать элемент с максимальным значением , т.е. элемент DD7.

Рассчитываем приращение функции цели для незанятых ячеек печатной платы по формуле (11)

DF6 = 4*2+0*2+5*1+0*2+6*1+2*1+4*2 = 29,

DF8 = 4*3+0*2+5*3+0*4+6*1+2*3+4*2 = 47,

DF9 = 4*4+0*3+5*4+0*3+6*2+2*2+4*1 = 56.

Выбираем минимальное значение из . Это соответствует 6 и 8 позициям. Но позиция 6 запрещенная, поэтому выбираем позицию 8.

2.2.8 В качестве размещенных элементов принимаем разьем X1 (позиция 1), DD1(позиция 2), DD5(позиция 3), DD8(позиция 4),

DD6(позиция 7), DD3(позиция 10), DD2(позиция 5), DD7(позиция 8).

DD4 ставим в позицию 9.

2.3 Результаты размещения

Таблица 12

ЭлементНомер посадочного места
X11
DD12
DD25
DD310
DD49
DD53
DD67
DD78
DD84

Рис.6

3. Трассировка цепей питания и земли

Трассировка – прокладка электрических трасс (проводов при проводном монтаже и печатных соединений при печатном монтаже), соответствующих принципиальной электрической схеме.

3.1 Краткое описание алгоритма Краскала

В алгоритме Краскала кратчайшую связывающую сеть (КСС) строят путем последовательного присоединения к ним ребер, удовлетворяющих следующим условиям:

1.Ребра должны быть кратчайшими.

2.Ребро не должно соединять изолированные вершины.

3.Ребро не должно образовывать циклы.

4.Присоединение рассматриваемого ребра не приводит к повышению степени вершины выше заданного числа.

На первом этапе в данном множестве вершин строится полный граф и задается матрица расстояния. На втором этапе упорядочиваются ребра в порядке возрастания их длины, и на последнем этапе построение КСС осуществляется последовательным выбором ребер, удовлетворяющим 4-м условиям, при этом формируется массив индексов ребер, которые анализируются по этим 4-м условиям.

3.2 Трассировка цепей земли по алгоритму Краскала

Расположим расстояния между контактами в порядке возрастания, используя рисунок 5 и таблицу 11 для расстояния равного 1,2,3,4:

1: d1-2, d1-3, d1-4, d2-3, d2-5, d3-4, d3-6, d4-7, d5-6, d5-8, d6-7, d6-9, d7-10, d8-9, d9-10;

2: d1-5, d1-6, d1-7, d2-4, d2-6, d2-8, d3-5, d3-7, d4-6, d4-10, d5-9, d6-8, d6-10, d7-9, d8-10;

3: d1-8, d1-10, d2-7, d2-9, d3-8, d3-10, d4-5, d4-9, d5-10, d7-8;

4: d1-9, d2-10, d3-9, d4-8, d5-7.

Рис.7

Выбираем ребра, отвечающие условиям алгоритма Краскала. Получаем:

d1-2, d1-3, d1-4, d2-5,d4-7, d5-8, d7-10, d8-9.

Рис. 8

3.3 Трассировка цепей питания по алгоритму Прима

В алгоритме Прима, в отличие от алгоритма Краскала, построение КСС ведется путем присоединения ближайших изолированных вершин, при этом все манипуляции проводятся лишь с матрицей расстояний.

Цепи питания будут размещаться в другом слое.

Фиксируем произвольную строку в таблице 11, например 1.Минимальное расстояние равное 1 в первой строке находится во 2,3,4 столбце. Минимальное расстояние между первым и вторым контактом. Выбираем минимальный по счёту столбец, – вычёркиваем второй столбец.

Далее фиксируем вторую строку. Минимальное расстояние равное 1 в первой и второй строке находится во 3,4 столбце первой строки. Выбираем минимальный по счёту столбец, – вычёркиваем третий столбец.

Далее аналогично.

Фиксируем строку 3. Минимальное расстояние в строке 1 в столбце 4. Вычёркиваем столбец 4.

Фиксируем строку 4. Минимальное расстояние в строке 2 в столбце 5. Вычёркиваем столбец 5.

Фиксируем строку 5. Минимальное расстояние в строке 3 в столбце 6, но т.к. 6 –запрещённое место, выбираем следующее минимальное значение в строке 4 в столбце 7. Вычёркиваем столбец 7.

Фиксируем строку 7. Минимальное расстояние в строке 5 в столбце 8. Вычёркиваем столбец 8.

Фиксируем строку 8. Минимальное расстояние в строке 7 в столбце 10. Вычёркиваем столбец 10.

Фиксируем строку 10. Минимальное расстояние в строке 8 в столбце 9. Вычёркиваем столбец 9.

В результате получаем следующую цепь d1-2, d1-3, d1-4, d2-5,d4-7, d5-8, d7-10, d8-9. (рис.9).

4. Трассировка сигнальных цепей с помощью волновых алгоритмов

Основные принципы построение трасс с помощью волнового алгоритма сводятся к следующему.

Все ячейки монтажного поля подразделяются на занятые и свободные. Занятыми считаются ячейки, в которых уже расположены проводники, построенные на предыдущих шагах, или находятся монтажные выводы элементов, а также ячейки, соответствующие границе плат и запрещенным для прокладывания проводников участкам. Каждый раз при проведении новой трассы можно использовать лишь свободные ячейки, число которых по мере проведения трасс сокращается.

На множестве свободных ячеек коммутационного поля моделируют волну влияния из одной ячейки в другую, соединяемых впоследствии общим проводником. Первую ячейку, в которой зарождается волна, называют источником, а вторую - приемником волны. Чтоюы иметь возможность следить за прохождением фронта волны влияний, его фрагментом на кождом этапе присваивают некоторые веса:

Рк = Рк-1 + Р, (12)

где Рк и Рк-1 –веса ячеек К-го и (К-1)-го фронтов;

Р–числовая характеристика, зависящая от выбранного критерия

отимизации.

На Рк накладывают одно ограничение – веса ячеек предыдущих фронтов не должны быть больше весов ячеек последующих фронтов. Фронт распространяется только на соседние ячейки, которые имеют с ячейками предыдущего фронта либо общую сторону, либо хотя бы одну общую точку. Процесс распространения волны продолжается до тех пор, пока её расширяющийся фронт не достигнет приемника или на i-ом шаге не найдётся ни одной свободной ячейки, которая могла бы быть включена в очередной фронт, что соответствует случаю невозможности проведения трассы при заданных ограничениях.

Если в результате распространения волна достигла приемника, то осуществляют ‘проведение пути’, которое заключается в движении от приемника к источнику по пройденным на этапе распространения волны ячейкам, следя за тем, чтобы значение волны монотонно убывало. В результате получают путь, соединяющий эти две точки. Из описания алгоритма следует, что все условия необходимые для проведения пути закладываются в правило приписания веса ячейкам.

Пример трассировки сигнальных цепей по волновому алгоритму.

Требуется соединить контакты 1,2,3 и 4. Волну будем распространять из первого контакта рис.10.

В результате получаем цепь, изображенную на рис.11.


Рис.11

Результаты трассировки всех цепей представлены в приложении 3.

Заключение

В результате выполнения курсового проекта был разработан печатный модуль РЭС с использованием учебных алгоритмов САПР.

Также по исходным данным была выполнена задача компоновки для функциональной схемы с использованием последовательного алгоритма. Была выполнено размещение элементов в принципиальной электрической схеме с использованием последовательного алгоритма. Была выполнена трассировка цепей питания и земли с использованием алгоритма построения кратчайших связывающих сетей и волнового алгоритма, т.е. трассировка цепей земли по алгоритму Краскала и трассировка цепей питания по алгоритму Прима, а также трассировка сигнальных цепей с помощью волновых алгоритмов.

Список используемой литературы

1. Деньдобренко Б.Н., Малика А.С. Автоматизация конструирования РЭА: Учебник для вузов. - М., Высш. школа,1980.

2. Основы проектирования микроэлектронной аппаратуры./Под ред. Б.Ф. Высоцкого. М., 1977.

3. Теория и методы автоматизации проектирования вычислительных систем./Под ред. М. Брейера. М., 1977.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно