Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Частотний (спектральний) опис детермінованих сигналів

Тип Реферат
Предмет Коммуникации и связь
Просмотров
942
Размер файла
332 б
Поделиться

Ознакомительный фрагмент работы:

Частотний (спектральний) опис детермінованих сигналів

Частотний (спектральний) опис детермінованих сигналів

Вступ

Широко застосовуваним математичним способом для дослідження радіотехнічних сигналів та кіл є розкладання складної функції у неперервну чи дискретну послідовність простіших, елементарних функцій. Це пояснюється тим, що для значної кількості кіл справедливий принцип накладання (суперпозиції), згідно з яким проходження складного сигналу через коло аналізують, розглядаючи окремо проходження кожної його елементарної складової, а відтак, додаючи на виході всі складові, визначають результуючий вихідний сигнал. Крім того, дуже часто розглядають завдання формування складних сигналів із більш простих, елементарних сигналів.

Завдання апроксимації, тобто наближеного подання складної функції сукупністю елементарних функцій на певному часовому інтервалі найчастіше розв'язують, виходячи з умови забезпечення мінімальної середньоквадратичної похибки. Аналіз показує, що апроксимацію складного сигналу із заданою точністю можна забезпечити мінімальною кількістю членів розкладу, якщо вибрати елементарні функції так, щоб вони були попарно ортогональні на даному часовому інтервалі.

Представлення складної функції у вигляді нескінченного ряду взаємо-ортогональних функцій називається узагальненим рядом Фур’є.

Як системи ортогональних функцій можна використати тригонометричні функції кратних аргументів, поліноми Ерміта, Лежандра, Чебишева, функції Бесселя та інші. Системи ортогональних функцій часто вибирають, виходячи з можливості практичної реалізації (генерування) елементарних складових. Достатньо просто реалізуються на практиці гармонічні функції – синусні (косинусні) коливання, що й зумовило широке застосування їх для розкладання складних коливань.

Сукупність усіх елементарних сигналів, які в сумі утворюють заданий складний сигнал, називають спектром сигналу у вибраному базисі елементарних сигналів.

1 Спектральний опис періодичних сигналів

Приймемо, що складний сигнал (напруга, струм, заряд, напруженість поля тощо) описуємо функцією , який змінюється періодично з частотою де – період повторення.

Відомо, що якщо функція задовольняє умови Діріхле, тобто протягом періоду вона має скінченну кількість розривів першого роду, а також скінченну кількість максимумів та мінімумів і задовольняє умову абсолютної інтегрованості

то вона може бути представлена рядом Фур’є у так званій тригонометричній формі в базисі ортогональних гармонічних функцій з кратними частотами:

(1а)

або в більш компактній формі:

(1б)

де – постійна складова (середнє значення сигналу за період);

та – амплітуди косинусних та синусних складових розкладу
-го порядкового номера;

, – амплітуда та початкова фаза -ої гармонічної складової.

Ці величини визначають виразами:

(2)

(3)

(4)

Амплітуду та початкову фазу -ої гармонічної складової визначають через та :

(5)

(6)

Зауважимо, що практично всі реальні сигнали задовольняють умови Діріхле, тому на практиці при розкладанні сигналів ці умови спеціально не акцентують.

Із виразів (1a,б) випливає, що спектр складного періодичного сигналу в загальному випадку складається з постійної складової A0 та нескінченної кількості гармонічних складових, частоти яких становлять дискретний ряд значень , кратних основній частоті . Ці складові називають гармоніками періодичного сигналу. Спектр, який складається з окремих складових, називають дискретним або лінійчастим.

Гармоніку, яка відповідає номерові , називають першою або основною гармонікою. При маємо другу гармоніку, при – третю і т.д. Амплітуди відповідних гармонік дорівнюють , їх початкові фази – . Постійну складову також можна розглядати як гармоніку з нульовою частотою та амплітудою, що дорівнює .

У загальному випадку гармоніки, які входять до складу спектра, мають різні амплітуди та початкові фази. Щоб отримати наочне уявлення про спектр, використовують графічне представлення спектра у вигляді двох спектральних діаграм: амплітудної та фазової. При їх побудові по oсі абсцис відкладають частоту або номер гармоніки, а по осі ординат – відповідно величини амплітуд гармонік та їх початкові фази .

Ha рис. 1 подані приклади амплітудної (а) та фазової (б) спектральних діаграм деякого періодичного коливання.


Рисунок 1 – Спектральні діаграми амплітуд (а) та фаз (б) періодичного сигналу

Зовнішній вигляд спектральних діаграм пояснює, чому спектр періодичної функції називають лінійчастим. Спектральні діаграми також дають наочне уявлення про «ширину» спектра, тобто про смугу частот, у межах якої містяться усі гармоніки сигналу.

Із спектральних діаграм видно, що віддаль між двома сусідніми гармоніками по осі частот (тобто віддаль між вертикальними лініями) дорівнює значенню частоти основної гармоніки періодичного сигналу. Це означає, що зі збільшенням частоти повторення сигналу віддаль між лініями на спектральних діаграмах збільшується і навпаки. Крім того, зміна частоти (або періоду) сигналу впливає також і на величини амплітуд гармонік, що випливає з виразів (3)–(5).

Аналіз виразів (2)–(4) показує, що якщо функція є парною (тобто ), то при тому всі коефіцієнти . Це означає, що в ряд Фур’є входять лише косинусні складові і постійна складова:

(7)

а початкові фази всіх гармонік дорівнюють нулеві.

Якщо ж функція є непарною (тобто ), то в цьому разі дорівнюють нулеві постійна складова та всі коефіцієнти та, як випливає з (6), початкові фази всіх гармонік дорівнюють – 380.

Ряд Фур'є має вигляд:

(8)

Розглянемо приклади визначення спектрів деяких поширених періодичних сигналів.

Періодична послідовність прямокутних імпульсів з амплітудою A та тривалістю , які повторюються з частотою (див. рисунок 14a), причому . При вибраній системі відліку часу функція є парною, тому її спектр складається лише з косинусних складових та постійної складової.

Постійна складова сигналу:

(9)

Амплітуди гармонік дорівнюють амплітудам косинусних складових:

(10)

Отже, ряд Фур’є заданого сигналу має вигляд:

(11)

Амплітуди гармонік залежать від величини а їх початкові фази визначає знак функції


Рисунок 2 – Періодична послідовність прямокутних імпульсів (а) та її амплітудний (б) і фазовий (в) спектри при співвідношенні

Із виразу (10) бачимо, що амплітуди тих гармонік дорівнюватимуть нулеві, для номерів k яких виконується співвідношення:

. (12)

Для випадку, що його розглядаємо (), із (12) одержуємо:


(13)

тобто четверта, восьма, дванадцята і т.д. гармоніки матимуть нульову амплітуду.

Сусідні спектральні лінії розділені на осі частот інтервалом, який дорівнює , про що згадано раніше. Із виразу (9) бачимо, що постійна складова сигналу при малих співвідношеннях значно менша від амплітуди A імпульсу. Теоретично кількість гармонік у спектрі даного сигналу є нескінченно велика. Проте при практичних розрахунках для спрощення аналізу можна не враховувати тих гармонік, амплітуди яких значно менші від амплітуд інших гармонік. У разі послідовності прямокутних імпульсів звичайно враховують лише гармоніки, які займають діапазон частот від ω = 0 до частоти, яка відповідає першому нулеві амплітудної діаграми. Далі буде показано, що саме ці гармоніки містять 38 % енергії сигналу. У випадку дуже малих співвідношень , що трапляється, наприклад, у радіолокаційній техніці, де = 1/200...1/2500, амплітуди сусідніх гармонік стають дуже близькими за величиною. Це видно з формули (10), яку при співвідношеннях можна наближено записати :

(14)

Це означає, що амплітуди гармонік практично не залежать від номера гармоніки і тому при аналізі треба враховувати велику кількість гармонік.

Періодичний сигнал пилкоподібної форми з періодом та амплітудою A (див. рис.2).

B інтервалі функція непарна, тому її спектр складається лише з синусних складових, амплітуди яких визначаємо на підставі формули (4):

(15)

Ряд Фур'є даного коливання має вигляд:

(16)

Із (15) видно, що амплітуди гармонік зменшуються прямопропорційно номерові k гармоніки, початкові фази всіх непарних гармонік дорівнюють – 38°, а парних гармонік + 38°.

2 Комплексна форма опису ряду Фурє

Поряд із тригонометричною формою запису ряду Фур'є часто використовують компактнішу комплексну форму, до якої можна перейти від (1 а,б), використавши формулу Ейлера:

. (17)


Рисунок 3 – Періодичний сигнал пилкоподібної форми (а) та його амплітудний (б) і фазовий (в) спектри

Справді, з урахуванням (17) записуємо:

(18)

Величину

(19)


прийнято називати комплексною амплітудою k-ої гармоніки. Вона несе інформацію про амплітуду та початкову фазу даної гармоніки.

Величину: називають комплексно спряженою з величиною.

Тепер вирази (1a,б) можна записати так:

(20)

Отриманий вираз є комплексною формою запису ряду Фур’є. У виразі (20) додавання ведеться як за додатними, так і за від’ємними значеннями k. Це означає, що в комплексний ряд Фур’є входять гармоніки з додатними і від’ємними частотами. Від’ємні частоти не мають фізичного сенсу. Вони з’являються як результат формального подання дійсної функції часу з допомогою комплексної форми.

Комплексні амплітуди можна визначити на підставі функції за формулою:

(21)

Ha підставі (21) знаходимо взаємозв'язок між величинами та Ck і Sk, які описуємо виразами (3), (4):

. (22)


Зауважимо, що для від’ємних значень Для де A0 визначаємо виразом (2).

Формули (20) та (21) називають парою перетворень Фур’є. Перша формула дає змогу визначити сигнал, якщо відомий його спектр, друга – визначити спектр сигналу, якщо задана функція , яка описує сигнал.

3 Спектральний опис імпульсних сигналів

Приймемо, що заданий сигнал має форму одинокого імпульсу (див. рис. (16а), який відрізняється від нуля на інтервалі .

Крім того, функція задовольняє умови Діріхле в будь-якому скінченному інтервалі і є абсолютно інтегрованою, тобто

Для проведення спектрального аналізу даного сигналу вчинимо так: перетворимо задану неперіодичну функцію у періодичну повторенням її з довільним періодом (рис. 16б). Отриману періодичну функцію можна розкласти в ряд Фур’є, причому коефіцієнти ряду Фур’є будуть тим менші, чим більший буде вибрано інтервал як період. Це випливає з виразів (2)–(4). Якщо період збільшувати до нескінченності, то всі імпульси, крім первинного, відсунуться у нескінченність і залишиться лише первинний імпульс .


Рисунок 4 – Одинокий (а) та періодичний (б) імпульсні сигнали однакової форми

Отже, (23)

Збільшуючи період до нескінченності, отримаємо в границі нескінченно малі амплітуди гармонічних складових, сума яких дає початкову неперіодичну функцію , задану в інтервалі

Кількість гармонічних складових, що входитимуть у ряд Фур'є, буде при цьому нескінченно велика, тому що при основна частота функції . Це означає, що віддаль по осі частот між спектральними лініями на спектральних діаграмах (яка дорівнює основній частоті ) стає нескінченно малою, а спектр – суцільним. Отже при спектральному поданні імпульсних неперіодичних сигналів отримуємо суцільний спектр, який складається з нескінченно великої кількості гармонік із нескінченно малими амплітудами.

Виразимо сказане раніше математично. Амплітуди косинусних та синусних складових k-ї гармоніки періодичного сигналу описуємо виразами:


(24a)

(24б)

де (25)

Якщо період T зростає до нескінченності, то вирази (24 а,б), (25) повинні зберігати свій сенс, проте частота прямуватиме до нуля, і її необхідно замінити нескінченно малою величиною Крім того, добуток при очевидно, може набирати довільних значень і буде неперервною (а не дискретною) функцією k. Тому величину слід розглядати як неперервну змінну частоту , яка змінюється від нуля до нескінченності.

Ураховуючи сказане, коефіцієнти Фур’є для нескінченно великого часового інтервалу розкладу наберуть вигляду:

(26 а)

(26 б)

Із (26 a,б) випливає, що кожна синусна та косинусна складова має нескінченно малу амплітуду.

Введемо позначення:

(27 а)

(27 б)

Тоді вирази (26a,б) відповідно набирають вигляду:

(28а)

(28б)

Співвідношення (27a,б) називають відповідно косинус-перетворенням Фур’є та синус-перетворенням Фур’є.

Із (28a,б) також випливає, що результуючі амплітуди складових спектра на довільній частоті визначаємо співвідношенням:

(29)

а їх початкові фази:

(30)

У виразі (29) введено позначення:

(31)

Як бачимо з (29), амплітуди dA() є нескінченно малі, тому для опису частотних властивостей імпульсного сигналу використовують поняття спектральної густини. Слід відзначити, що спектральна густина – не спектр, а лише спектральна характеристика імпульсу, тому що на кожній конкретній частоті енергія імпульсу та амплітуда відповідної спектральної складової дорівнює нулеві.

Справді, із (29) отримуємо:

(32)

Це означає, що функція характеризує густину розподілу амплітуд складових суцільного спектра по частоті. Функцію називають модулем спектральної густини, що описує амплітудний спектр імпульсного сигналу, а функцію , яка описує фазовий спектр імпульсного сигналу, називають аргументом спектральної густини.

Отже, імпульсний сигнал – це сукупність нескінченної кількості гармонічних складових із нескінченно малими амплітудами , початковими фазами , частота яких неперервно змінюється від нуля до нескінченності, що математично можна записати так:

(33)

Розглянемо приклади визначення спектральної густини деяких поширених сигналів.

Одинокий імпульс прямокутної форми (рис. 17а), описуємо виразом:

(35)

Складові та модуля спектральної густини визначаємо на основі (27 а,б):

Отже, модуль та аргумент спектральної густини, згідно з (30), (31), описуємо виразами:

(36)

(37)

звідки бачимо, що модуль дорівнює нулеві, якщо аргумент синуса задовольняє умову:

(38)

Ця умова виконується на частотах

(39)

Значення при знаходимо з виразу:

(40)

Отже, функція змінюється залежно від знаку Оскільки модуль спектральної густини є величина додатна, то зміна знаку враховується зміною аргументу на величину . На рис. 5) зображено відповідно графіки модуля та аргументу спектральної густини прямокутного імпульсу.

Із виразів (36)–(40) випливає, що вигляд модуля спектральної густини суттєво залежить від тривалості імпульсу зі зменшенням значення при яких функція стає рівною нулеві, переміщаються по осі частот праворуч, спектральна густина стає більш „рівномірною”.


Рисунок 5 – Характеристики спектральної густини одинокого прямокутного імпульсу

Експоненційний імпульс (рис. 18) описуємо виразом:

(41)

Складові та визначаємо згідно з (27), використавши табличні значення відповідних інтегралів:

Модуль та аргумент спектральної густини описуємо виразами:

(42)

(43)

Графіки функцій G() та зображені відповідно на рис. 6.


Рисунок 6 – Експоненційний імпульс та його спектральні характеристики

4 Спектральна функція детермінованих сигналів

Широкого поширення набула комплексна форма представлення спектральних характеристик імпульсних сигналів, яка часто є зручнішою та компактнішою при аналізі сигналів.

Покажемо перехід до комплексної форми. Для цього використаємо комплексну форму запису ряду Фур’є (20) і запишемо співвідношення (23):

(44)

У (44) враховано, що при Т кутова частота перетворюється у нескінченно малий приріст , частота k-ї складової ряду k – у поточну частоту , операція додавання переходить в операцію інтегрування. Крім того, введено позначення:

(45)

Функція називається комплексною спектральною густиною або комплексною спектральною функцією.

Модуль комплексної спектральної густини || характеризує густину розподілу амплітуд спектральних складових суцільного спектру по частоті ω, а її аргумент || – фазовий спектр, про що було сказано раніше.

Формули (44) та (45) описують відповідно часове та спектральне представлення імпульсного сигналу і утворюють пару перетворень Фур’є. Формула (45) дає змогу здійснити пряме перетворення Фур’є і знайти комплексну спектральну густину імпульсного сигналу s(t).

Символічно позначимо пряме перетворення Фур'є так:

(46)

Формула (44) дає можливість здійснити зворотне перетворення Фур’є і визначити імпульсний сигнал як функцію часу, якщо задана його спектральна густина Символічно позначимо зворотне перетворення Фур’є так:

[] = s(t). (47)

Спектральну густину можна також подати в такому вигляді:

(48)

Із (48) випливає, що косинус-перетворення Фур'є описує дійсну частину комплексної спектральної густини а синус-перетворення – її уявну частину зі знаком мінус.

Порівняння виразу для комплексної спектральної густини одиночного імпульсного сигналу (45) з виразом для комплексних амплітуд пepioдичної послідовності імпульсів (21) показує, що їх значення для частот відрізняються між собою лише множником 2/T. Це означає, що справедливе таке співвідношення між комплексними амплітудами k-х гармонік періодичного сигналу та значеннями комплексної спектральної густини – для частот, які відповідають частотам цих гармонік:

(49)

де – частота повторення періодичного сигналу.

Співвідношення (49) можна записати так:

(50)

(51)

Отже, модуль спектральної густини одиночного імпульсу та обгинаюча лінійчастого амплітудного спектра періодичної послідовності таких самих імпульсів збігаються за формою і відрізняються лише масштабом, аргумент спектральної густини збігається з обгинаючою лінійчастого фазового спектра даного періодичного сигналу.

Сказане ілюструє рисунок 7, на якому зображені одиночний прямокутний імпульс, модуль його спектральної густини, періодична послідовність імпульсів та її лінійчастий амплітудний спектр.

Із збільшенням періоду T віддаль між спектральними лініями на рис.19 та коефіцієнти зменшуються, але так, що відношення залишається незмінним.

Комплексну функцію яка характеризує залежність спектра сигналу лише від його форми, називають спектральною функцією. З її допомогою на основі співвідношень (50), (51) можна визначити амплітудний та фазовий спектри сигналу незалежно від частоти його повторення.

Рисунок 7 – Спектральні характеристики одиничного прямокутного імпульсу та періодичної послідовності подібних імпульсів


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно