Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Методы измерения частоты

Тип Реферат
Предмет Коммуникации и связь
Просмотров
1024
Размер файла
73 б
Поделиться

Ознакомительный фрагмент работы:

Методы измерения частоты

Министерство Образования РФ

Чебоксарский Филиал (институт) Московского Государственного Открытого Университета

РЕФЕРАТ

ПО ДИСЦИПЛИНЕ "МЕТРОЛОГИЯ И СТАНДАРТИЗАЦИЯ"

НА ТЕМУ: "МЕТОДЫ ИЗМЕРЕНИЯ ЧАСТОТЫ"

ЧЕБОКСАРЫ 2000
МЕТОДЫ ИЗМЕРЕНИЯ ЧАСТОТЫ

ОБЩИЕ СВЕДЕНИЯ

Частотой колебаний называют число полных колебаний в единицу времени:

f=n/t (1)

где tвремя существования п колебаний.

Для гармонических колебаний частота f = 1/T, где Т — период колебаний.

Единица частоты герц определяется как одно колебание в одну секунду. Частота и время неразрывно связаны между собой, поэтому измерение той или другой величины дикту­ется удобством эксперимента и требуемой погрешностью измерения. В Международной системе единиц СИ время является одной из семи основных физических величин. Частота электромагнитных колебаний связана с периодом колебания Т и длиной однородной плоской волны в свобод­ном пространстве l следующими соотношениями: fT = 1 и fl = с, где с—скорость света, равная 299 792,5 ± 0,3 км/с.

Спектр частот электромагнитных колебаний, исполь­зуемых в радиотехнике, простирается от долей герца до тысяч гигагерц. Этот спектр вначале разделяют на два диапазона — низких и высоких частот. К низким частотам относят и нфра звуковые (ниже 20 Гц), звуковые (20— 20 000 Гц) и ультразвуковые (20—200 кГц). Высокочас­тотный диапазон, в свою очередь, разделяют на высокие частоты (20 кГц — 30 МГц), ультравысокне (30 — 300 МГц) и сверхвысокие (выше 300 МГц). Верхняя граница сверхвысоких частот непрерывно повышается и в настоящее время достигла 80 ГГц (без учета оптического диапазона). Такое разделение объясняется разными способами получе­ния электрических колебаний и различием их физических свойств, а также особенностями распространения на рас­стояние. Однако четкой границы между отдельными участ­ками спектра провести невозможно, поэтому такое деление в большой степени условно.

МЕТОД ПЕРЕЗАРЯДД КОНДЕНСАТОРА

Присоединим конденсатор, емкость которого С, к источ­нику напряжения U. Конденсатор зарядится, и в нем нако­пится количество электричества q = CU. Если конденсатор переключить на магнитоэлектрический измеритель тока, то через него пройдет количество электричества q, вызвав отклонение указателя. Если конденсатор поочередно при­соединять к источнику напряжения для заряда и к измери­телю тока для разряда с частотой переключения f раз в секунду, то количество электричества, проходящее через амперметр при разряде, будет в f раз больше: fq = fCU = I, где I —среднее значение тока разряда. Отсюда следует, что ток в такой схеме прямо пропорционален частоте пере­ключения и при постоянном произведении CU шкалу амперметра можно градуировать в единицах частоты:

f=I/(CU) (2)

Рис. 1. Структурная схема конденсаторного

частотомера

Структурная схема конденсаторного частотомера, в кото­ром использован этот метод (рис. 11), состоит из усилителя-ограничителя УО и Зарядно-разрядного устройства ЗРУ с магнитоэлектрическим индикатором. Кроме того, имеется генератор Гк для калибровки частотомера на одной фиксированной частоте. На вход частотомера поступает напряжение измеряемой частоты. В усилителе-ограничителе оно принимает форму меандра. Меандр управ­ляет зарядно-разрядным устройством, схема которого приведена на рис. 2.

Рис. 2. Схема счетного устройства конден­саторного частотомера

Транзистор Т работает в режиме ключа: когда он за­крыт, один ii3 конденсаторов С заряжается через резистор R, а когда транзистор открыт, тот же конденсатор разря­жается через транзистор. Зарядный ток протекает через магнитоэлектрический миллиамперметр, градуированный в единицах частоты. Конденсаторы С переключаются: минимальная и максимальная емкость определяет диапазон измеряемых частот, а число конденсаторов — число под-диапазонов.

Значение напряжения, до которого заряжается конден­сатор данного поддиапазона, в зависимости от измеряемой частоты и значения емкости конденсатора изменяется, и градуировка шкалы частотомера нарушается. Для устра­нения этого явления в зарядно-разрядном устройстве предусмотрена стабилизация напряжения заряда, которая осуществляется стабилитроном Дз; напряжение питаниятакже стабилизируется с помощью стабилитронов Д1 и Д2 Нижний предел измеряемых частот составляет 10 Гц;

при более низких частотах подвижная часть магнитоэлектри­ческого индикатора будет совершать механические колеба­ния в такт с измеряемой частотой. Верхний предел зависит от постоянной времени цепи заряда, определяемой не только сопротивлением резистора R и минимальной емко­стью конденсатора С, но и монтажными емкостями элемен­тов зарядно-разрядного устройства, и не превышает 1 МГц. Погрешность измерения зависит от класса точности миллиамперметра, остаточной нестабильности напряжения заряда конденсатора и составляет 1-2 %.

РЕЗОНАНСНЫЙ МЕТОД

fx

ЭСв

ИК

ЭСв

Резонансный метод измерения частоты заключается в сравнении измеряемой частоты с собственной резонансной частотой градуированного измерительного колебательного

Рис. 3. Структурная схема измерения частоты резонансным методом

контура. Этот метод применяется в диапазоне высоких и сверхвысоких частот. Структурная схема его реализации приведена на рис. 3. Источник напряжения измеряемой частоты fx с помощью эле­мента связи ЭСв соеди­няется с прецизионным из­мерительным контуром ИК, который настраивается в резонанс с частотой fx Момент резонанса фиксируется по максимальному по­казанию индикатора, при­соединенного к контуру через второй элемент связи. Из­меряемая частота определяется по градуированной шкале микрометрического механизма настройки с большим числом отсчетных точек. Контур и индикатор конструктивно объеди­нены в устройство, называемое резонансным частотомером. Если шкала механизма настройки градуирована в длинах волн, то такое устройство называют резонансным волноме­ром.

Схема резонансного частотомера (рис. 4) позволяет выявить источники погрешности измерения. Погрешность градуировки определяется качеством механизма настройки;

ее можно уменьшить путем предварительной градуировки шкалы частотомера с помощью образцовой меры. Неста­бильность частоты измерительного контура возникает вслед­ствие изменения его геометрических размеров под влиянием изменения температуры окружающей среды; ее можно вычислить по следующей формуле:

где Df — отклонение частоты от резонансной под влиянием изменения температуры на DT, К; a линейный темпе­ратурный коэффициент расширения материала контура; k — конструктивный коэффициент. Нестабильность настройки кон­тура возникает также при изме­нении вносимых реактивных со­противлений со стороны источника fx и индикатора. Активные вноси­мые сопротивления уменьшают доб­ротность контура.

Рис.5 резонансная кривая колебательного контура

Уменьшение влияния вносимых сопротивлений достигается ослаблением связи с источником fx и индикатором.

Неточность фиксации резонанса определяется значением добротности контура Q нагруженного измеритель­ного контура и разрешающей способностью индикатора. Из уравнения резонансной кривой (рис. 5) можно по­лучить формулу для расчета относительной погрешности от неточности фиксации резонанса:

(3)

где U0 показание индикатора при резонансе; Upпоказание при расстройке измерительного контура наDf.

Измерительный контур резонансного частотомера в зави­симости от диапазона частот, для которого он предназначен, выполняется с сосредоточенными или распределенными параметрами. Резонансные частотомеры с сосредоточенными параметрами в настоящее время полностью вытеснены циф­ровыми частотомерами, а с распределенными параметрами широко применяются в диапазоне СВЧ.

Резонансные частотомеры характеризуются диапазоном измерения частот, погрешностью и чувствительностью, т.е. минимальной мощностью, поглощаемой от источника измеряемой частоты, необходимой для уверенного отсчета показаний индикатора при резонансе.

Резонансные частотомеры с распределенными парамет­рами. Колебательный контур частотомера выполняют либо в виде отрезка коаксиальной линии, либо в виде объемного резонатора. Настройка коаксиальной линии производится изменением ее длины, объемного резонатора — изменением его объема.

Частотомеры с распределенными параметрами связы­вают с источниками измеряемой частоты через штыревую или рупорную антенну или через элементы связи в виде





Рис. 6. Четвертьволновый резонансный частотомер


Рис. 7. Резонансный часто­томер

с нагруженной линией


петель; зондов, щелей и круглых отверстий. На входе частотомера часто включают аттенюаторы с переменным ослаблением для регулировки входной мощности. Иногда применяют направленные ответвители.

Индикатор частотомера состоит из полупроводникового (германиевого или кремниевого) диода и магнитоэлектри­ческого микроамперметра большой чувствительности. Связь диода с измерительным контуром осуществляется через петлю связи, располагаемую внутри коаксиальной линии или объемного резонатора. Если частотомер предназначен для использования при импульсной модуляции, то видео­импульсы, получившиеся после детектирования диодом, поступают на транзисторный усилитель и амплитудный вольтметр. Параллельно последнему можно включить осцил­лограф.

Коаксиальные частотомеры выполняют в основном двух типов: четвертьволновые и с нагруженной линией.

Четвертьволновый резонансный частотомер представляет собой разомкнутый отрезок коаксиальной линии (рис. 6). Настройка его осуществляется с помощью микрометрического механизма со шкалой, градуированной в единицах длины I. Резонанс, в линии наступает при I, равной нечет­ному числу четвертей длины волны.

где п = 0, 1, 2 ...

Отсчеты l1 и l2 соответствуют l/4 и 3l/4, поэтому их раз­ность равна половине длины волны. В общем случае

Четвертьволновые частотомеры применяются на часто­тах 600 МГц—10 ГГц. Погрешность измерения лежит в пределах 10-3-5*10-4.

Резонансный частотомер с нагруженной линией отли­чается от четвертьволнового тем, что разомкнутая коакси­альная линия нагружается емкостью С, образуемой торцами внутреннего и наружного проводников (рис. 7). Резонанс в нагруженной линии наступает при выполнении условия

где D — внутренний диаметр внешнего проводника; d— внешний диаметр внутреннего проводника: ρ — волновое сопротивление линии.

При настройке такого частотомера одновременно изме­няются и длина линии l, и емкость С. Перекрытие, по срав­нению с четвертьволновым частотомером, возрастает в 2— 3 раза. Двумя частотомерами с нагруженной линией пере­крывается диапазон частот от 150 до 1500 МГц. Измеряемую частоту определяют с помощью градуировочных таблиц или графиков. Погрешность измерения 5-10~3.

Резонансный частотомер с объемным резонатором на­страивается передвижением подвижного поршня (плунжера). Возбуждаемые внутри полости резонатора стоячие волны бывают различных типов. Это зависит от способа введения возбуждающего электромагнитного поля. При возбужде­нии цилиндрического резонатора через отверстие в центре торцевой стенки (рис. 8, а) возникают колебания типа H111. Из электродинамики известно, что собственная длина волны, в резонаторе связана с его диаметром а и высотой I следующей зависимостью:

(L/l)2 + l,37(l/d)2 =(2/λ111)2

Если положить l= d, то λ111 =1,3 d.

При возбуждении полости резонатора через отверстие в ее боковой стенке возникают колебания типа H011 (рис. 8, б). Поле этих волн характерно отсутствием токов проводимости между торцевой и цилиндрической стенками резонатора, что позволяет применить для настройки бес­контактный плунжер. Проникающая при этом в нерабочее пространство за поршнем энергия поглощается предусмотренным

Рис. 8-8. Схемы частотомеров с объемными резонаторами

для этой цели покрытием, нанесенным на левую (рис. 8, б) поверхность плунжера. Зависимость собствен­ной длины волны типа λ011 от размеров резонатора опре­деляется выражением

(l/l)2 + 5,94 (l/d)2=(2/ λ011)2

Если для этого резонатора также положить l= d, то λ011 »0,76d.

Шкала настройки частотомеров с объемными резонато­рами градуируется с помощью измерительного генератора соответствующего диапазона частот. Следовательно, глав­ным источником погрешности градуировки является по­грешность установки частоты по шкале генератора. Чтобы не усугублять погрешность измерения неточностью настрой­ки в резонанс, добротность объемного резонатора доводят до очень высокого значения. Это достигается полировкой и золочением внутренней поверхности резонатора; при этом добротность достигает 10 000—30 000. Все же погреш­ность составляет 10-3—10-4. К недостаткам частотомеров с объемными резонаторами относится малое перекрытие, что приводит к необходимости иметь большое их число для измерения нужного диапазона частот.

Частотомеры с распределенными параметрами по спо­собу включения в измеряемую цепь разделяют на проходные и поглощающие. Проходной частотомер снабжен двумя элементами связи — входным для связи с электромагнит­ным полем и выходным для связи с индикатором. Момент настройки в резонанс определяют по максимальному пока­занию индикатора (рис. 9, а). Поглощающий частотомер имеет один элемент связи — входной, а

Рис. 8-9. Проходной (а) и поглощающий (б) часто­томеры

индикатор включают в линию передачи (рис. 8-9, б). Пока частотомер не настроен в резонанс, показания индикатора максимальны;

при настройке часть энергии поглощается в резонаторе и показания индикатора уменьшаются.

МЕТОД СРАВНЕНИЯ

Метод сравнения для измерения частоты получил широ­кое распространение, благодаря его простоте, пригодности для использования практически в любом диапазоне частот и сравнительно высокой точности результата измерения. Измеряемая частота определяется по равенству или крат­ности образцовой частоте. Следовательно, для измерения частоты fx. методом сравнения необходимо иметь источник образцовых частот fобр индикатор равенства или крат­ности fx. и fобр. В качестве источника образцовых частот применяют образцовые меры частоты, так называемые стандарты частоты, с нестабильностью Ю-9—10~11 за 1 сут.

Для градуировки генераторов измерительных сигналов используют синтезаторы частоты и другие генераторы, погрешность установки частоты которых на порядок, а нестабильность частоты за 30 мин — на 3 порядка меньше, чем у градуируемого генератора.

Индикатором равенства или кратности частот может быть осциллограф или нелинейный преобразователь частоты;

Рис. 10. К определению кратности частот

в соответствии с этим метод сравнения для измерения час­тоты реализуют двумя способами: осциллографическим и гетеродинным.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно