Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Математический маятник

Тип Реферат
Предмет Физика
Просмотров
521
Размер файла
23 б
Поделиться

Ознакомительный фрагмент работы:

Математический маятник

Содержание

Введение

Уравнение движения математического маятника

Период колебаний

Выводы

Литература

Введение

Сейчас уже невозможно проверить легенду о том, как Галилей, Стоя на молитве в соборе, внимательно наблюдал за качением бронзовых люстр. Наблюдал и определял время, затраченное люстрой на движение туда и обратно. Это время потом назвали периодом колебаний. Часов у Галилея не было, и, чтобы сравнить период колебаний люстр, подвешенных на цепях разной длины, он использовал частоту биения своего пульса.

Маятники используют для регулировки хода часов, поскольку любой маятник имеет вполне определённый период колебаний. Маятник находит также важное применение в геологической разведке. Известно, что в разных местах земного шара значения g различны. Различны они потому, что Земля — не вполне правильный шар. Кроме того, в тех местах, где залегают плотные породы, например некоторые металлические руды, значение g аномально высоко. Точные измерения g с помощью математического маятника иногда позволяют обнаружить такие месторождения.


Уравнение движения математического маятника

Математическим маятником называется тяжёлая материальная точка, которая двигается или по вертикальной окружности (плоский математический маятник), или по сфере (сферический маятник). В первом приближении математическим маятником можно считать груз малых размеров, подвешенный на нерастяжимой гибкой нити.

Рассмотрим движение плоского математического маятника по окружности радиуса l с центром в точке О (рис. 1). Будем определять положение точки М (маятника) углом отклонения j радиуса ОМ от вертикали. Направляя касательную Mt в сторону положительного отсчёта угла j, составим естественное уравнение движения. Это уравнение образуется из уравнения движения

mW=F+N, (1)
где F — действующая на точку активная сила, а N — реакция связи.

Рисунок 1

Уравнение (1) мы получили по второму закону Ньютона, который является основным законом динамики и гласит, что производная по времени от количества движения материальной точки равна действующей на неё силе, т. е.

. (2)

Считая массу постоянной, можно представить предыдущее уравнение в виде

или ,

где W есть ускорение точки.

Итак уравнение (1) в проекции на ось t даст нам одно из естественных уравнений движения точки по заданной неподвижной гладкой кривой:

или .

В нашем случае получим в проекции на ось t

,
где m есть масса маятника.

Так как или , отсюда находим

.
Сокращая на m и полагая

, (3)
будем окончательно иметь:

,

,

,

. (4)
Рассмотрим сначала случай малых колебаний. Пусть в начальный момент маятник отклонён от вертикали на угол j и опущен без начальной скорости. Тогда начальные условия будут:

при t = 0, . (5)
Из интеграла энергии:

, (6)
где V — потенциальная энергия, а h — постоянная интегрирования, следует, что при этих условиях в любой момент времени угол j£j0. Значение постоянной h определяется по начальным данным. Допустим, что угол j0 мал (j0£1); тогда угол j будет также мал и можно приближённо положить sinj»j. При этом уравнение (4) примет вид

. (7)
Уравнение (7) есть дифференциальное уравнение простого гармонического колебания. Общее решение этого уравнения имеет вид

, (8)
где A и B или a и e суть постоянные интегрирования.

Отсюда сразу находим период (T) малых колебаний математического маятника (период — промежуток времени, в течении которого точка возвращается в прежнее положение с той же скоростью)

и

,
т.к. sin имеет период равный 2p, то wT=2p Þ

(9)

Для нахождения закона движения при начальных условиях (5) вычисляем:

. (10)
Подставляя значения (5) в уравнения (8) и (10), получим:

j0 = A, 0 = wB,

т.е. B=0. Следовательно, закон движения для малых колебаний при условиях (5) будет:

j = j0cos wt. (11)

Найдём теперь точное решение задачи о плоском математическом маятнике. Определим сначала первый интеграл уравнения движения (4). Так как

,
то (4) можно представить в виде

.
Отсюда, умножая обе части уравнение на dj и интегрируя, получим:

. (12)
Обозначим здесь через j0 угол максимального отклонения маятника; тогда при j = j0 будем иметь, откуда C = w2cosj0. В результате интеграл (12) даёт:

, (13)
где w определяется равенством (3).

Этот интеграл представляет собой интеграл энергии и может быть непосредственно получен из уравнения

, (14)
где — работа на перемещении M0M активной силы F, если учесть, что в нашем случае v0=0, и (см. рис.).

Из уравнения (13) видно, что при движении маятника угол j будет изменяться между значениями +j0 и -j0 (|j|£j0, так как ), т.е. маятник будет совершать колебательное движение. Условимся отсчитывать время t от момента прохождения маятника через вертикаль OA при его движении право (см. рис.). Тогда будем иметь начальное условие:

при t=0, j=0. (15)

Кроме того, при движении из точки A будет ; извлекая из обеих частей равенства (13) квадратный корень, получим:

.
Разделяя здесь переменные, будем иметь:

. (16)

Так как

, ,
то

.
Подставляя этот результат в уравнение (16), получаем:

. (17)

Чтобы проинтегрировать уравнение (17), нужно найти квадратуру левой части. Для этого перейдём от j к новым переменному a, полагая:

, где . (18)

Тогда

,
откуда

.
Кроме того,

.
Подставляя все эти величины в уравнение (17) и заменяя w его значением (3), получим:

. (19)

По принятым начальным условиям (15) при t=0 угол j=0, а следовательно, как видно из (18), и a=0. Тогда, беря от обеих частей уравнения (19) определённые интегралы справа от 0 до t, а слева от 0 до a, получим закон движения маятника в виде

. (20)

Интеграл, стоящий в левой части равенства (20), представляет собой эллиптический интеграл первого рода. Величина k называется модулем эллиптического интеграла. Этот интеграл есть функция верхнего предела и модуля, т.е.

. (21)
Если в равенстве (21) рассматривать верхний предел a как функцию от интеграла u, то такая функция носит название амплитуды u и обозначается так:

,
или

. (22)

Беря от обеих частей равенства (22) синус, мы получим:

. (23)

Функция snu (синус-амплитуда u) представляет собой так называемую эллиптическую функцию Якоби. Поскольку, согласно уравнению (20), , то, переходя в равенстве (23) от a к j с помощью формулы (18), найдём закон движения маятника, выраженный эллиптическую функцию sn, в виде

. (24)

Период колебаний

Найдём период T колебания маятника. Из положения j = 0 в положение j = j0 маятник приходит за четверть периода. Так как, согласно равенству (18), при j = 0 и a = 0, а при j = j0 величина , то из уравнения (20) имеем:

. (25)

Таким образом, определение периода колебаний маятника сводится к вычислению величины

, (26)
представляющий собой четверть периода эллиптического интеграла (21).

Известно (формула Валлиса), что

. (27)
Разлагая в выражении (26) подынтегральную функцию в ряд, получим:

.
Тогда, используя формулу (27), будем иметь:

.(28)
Подставляя это значение K в равенство (25) и учитывая, что

,
получим для периода колебаний плоского математического маятника выражение

. (29)

Следовательно, чем больше j0 (угол размаха), тем больше период колебания маятника. Таким образом, математический маятник свойством изохронности не обладает. Если при малых размерах ограничиться в формуле (29) только двумя первыми членами, то, полагая , получим приближённое выражение периода

. (30)


Выводы

Получено уравнение простого гармонического колебания, закон движения для малых колебаний, заокн движения маятника через эллиптическую функцию.

Получено выражение для периода колебаний маятника.

Литература

Бухгольц Н.Н. Основной курс теоретической механики. М.: Наука. 1969.

Боровой А., Херувимов А. Колебания и маятники. Ж. Квант. № 8, 1981.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
149061
рейтинг
icon
3144
работ сдано
icon
1360
отзывов
avatar
Математика
Физика
История
icon
143226
рейтинг
icon
5889
работ сдано
icon
2657
отзывов
avatar
Химия
Экономика
Биология
icon
97529
рейтинг
icon
2044
работ сдано
icon
1278
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
56 280 оценок star star star star star
среднее 4.9 из 5
ИРНИТУ
Работа выполнена быстро, качественно, зачет сдан, исполнителя рекомендую!!!
star star star star star
Мурманский арктический университет
Очень здорово выполнены работы, результатом доволен, исполнителя рекомендую!
star star star star star
СПБГУПТД
Заказ был выполнен раньше срока, были учтены все мои требования и пожелания
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачи и вопросы

Решение задач, Высшая математика

Срок сдачи к 3 дек.

только что

Отчет по производственной практике

Другое, Право и организация соцобеспечения

Срок сдачи к 9 дек.

только что

Задание 11 Резьбовое соединение

Чертеж, Инженерная графика

Срок сдачи к 3 дек.

1 минуту назад

Особенности бухгалтерского учета зае?мных средств предприятия

Реферат, корпоративные финансы

Срок сдачи к 3 дек.

1 минуту назад

Определить опорные реакции

Решение задач, теоретическая механика

Срок сдачи к 25 дек.

1 минуту назад

Особенности производства сборов лекарственного растительного сырья.

Курсовая, Изготовление лекарственных препаратов в условиях аптечных организаций

Срок сдачи к 5 дек.

3 минуты назад

задание по статистике

Онлайн-помощь, статистика

Срок сдачи к 4 дек.

3 минуты назад

Создание расчетных систем для автоматизации управленческой деятельности

Решение задач, Информационные технологии

Срок сдачи к 12 дек.

4 минуты назад

Лариса здравствуйте, мне Вас порекомендовали по конструкциям...

Решение задач, Строительные конструкции

Срок сдачи к 3 дек.

4 минуты назад

Требуется написать код на c# ооп

Лабораторная, Информатика и программирование

Срок сдачи к 8 дек.

4 минуты назад

Написать небольшое эссе

Эссе, Философия

Срок сдачи к 12 дек.

6 минут назад

Оценка в ипотечном кредитование, сущность

Курсовая, Оценка недвижимости, аудит, экономика, банковское дело

Срок сдачи к 13 дек.

6 минут назад

Решить контрольную работу.

Контрольная, Расчет энергообеспечения хозяйства ., энергетика

Срок сдачи к 27 дек.

8 минут назад

Анализ компании "Деловые линии" по примеру

Другое, Маркетинг на транспорте

Срок сдачи к 5 дек.

10 минут назад

Выполнить задание (внизу указал что именно)

Диплом, Преддипломная практика машиностроение

Срок сдачи к 8 дек.

10 минут назад

Лариса здравствуйте, мне Вас порекомендовали по конструкциям...

Решение задач, Строительные, строительство

Срок сдачи к 3 дек.

10 минут назад

Заполнить документы гку грп земельных участков

Решение задач, Учет, кадастровая оценка и регистрация объектов недвижимости

Срок сдачи к 8 дек.

11 минут назад

Решить задачу

Решение задач, теоретическая механика

Срок сдачи к 3 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно