Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Дисперсионный анализ показателей смертностей населения Нерюнгринского улуса

Тип Реферат
Предмет Бухгалтерский учет и аудит
Просмотров
494
Размер файла
150 б
Поделиться

Ознакомительный фрагмент работы:

Дисперсионный анализ показателей смертностей населения Нерюнгринского улуса

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

“Якутский государственный университет им. М.К. Аммосова”

Технический институт (филиал) в г. Нерюнгри

Педагогический факультет

Кафедра Математики и Информатики

КУРСОВАЯ РАБОТА

по дисциплине «Теория вероятностей и математическая статистика»

на тему: «Дисперсионный анализ показателей смертностей населения Нерюнгринского улуса»

Студентка:

Копотева К. Г., гр. ПМ-04

Руководитель:

Преподаватель:

доцент кафедры к.ф.–м.н.

Попова А.М.

Оценка курсовой работы:__________________

Принял:_______________ Дата _____________

Нерюнгри 2007

Содержание

Введение

1. Теоретическая часть

1.1. Однофакторный дисперсионный анализ

1.2. Линейный множественный регрессионный анализ

1.3. Множественный корреляционный анализ

2. Аналитическая часть

2.1. Сбор и первичная обработка данных

2.2. Дисперсионный анализ

2.3. Построение уравнения множественной регрессии

2.4. Исключение незначимых факторов

3. Заключение

4. Список литературы

5. Приложение


Введение

Анализируя данные, о смертности населения за 2004-2006 год, полученные в Нерюнгринской городской больнице (см. таблицу 1), можно сделать вывод о том, что общий коэффициент смертности, то есть число умерших от всех причин на 1000 человек населения, увеличивается (рис.1).

Показатель смертности на 1000 человек населения

Таблица 1

2004 год2005 год2006 год
7.37.88.1

Рисунок 1

Несмотря на повышение рождаемости, демографическая ситуация в Нерюнгринском улусе характеризуется уменьшением численности населения. Главной причиной демографического кризиса является преобладание смертности над рождаемостью. Именно поэтому, чтобы снизить показатель смертности необходимо более детально изучить все причины и факторы, приводящие к ее увеличению. Несомненно, в изучении причин, важно исследование значимости отдельных нозологических форм заболеваний. Зная, какие заболевания приводят чаще всего к летальному исходу, можно разработать программу профилактических работ направленную на уменьшение числа данных заболеваний и предотвращения их дальнейшего развития на раннем этапе.

Цель: определение видов заболеваний оказывающих наибольшее влияние на показатели летальности, основываясь на статистике смертности населения Нерюнгринского улуса по классам болезней и возрастам за 2006 год.

Задачи:

1. сбор статистических данных необходимых для определения закономерности изменения смертности по причинам заболеваний;

2. проведение однофакторного дисперсионного анализа, с целью определения влияния различных болезней на общее количество смертности населения;

3. исключение отдельных факторов, оказывающих незначительное влияние;

4. построение уравнения множественной регрессии, отражающего соотношение между смертностью и различными классами заболеваний.

1. Теоретическая часть

1.1. Однофакторный дисперсионный анализ

Дисперсионный анализ (от латинского Dispersio - рассеивание) - статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Целью дисперсионного анализа является проверка значимости различия между средними с помощью сравнения дисперсий. Дисперсию измеряемого признака разлагают на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение таких слагаемых позволяет оценить значимость каждого изучаемого фактора, а также их комбинации.

Пусть генеральные совокупности Х1, Х2,…, Хр распределены нормально и имеют одинаковую, хотя и неизвестную дисперсию. Математические ожидания которых известны и могут быть различны при заданном уровне значимости α. Проверим при заданном уровне значимости нулевую гипотезу Н0: М(Х1) = М(Х2) = … = М(Хр) о равенстве всех математических ожиданий. Это означает, что мы устанавливаем значимо или нет, различаются выборочные средние.

На практике дисперсионный анализ применяют, чтобы установить оказывает ли существенное влияние качественный фактор F, имеющий p уровней: F1, F2, …, Fp , на изучаемую величину.

Основная идея дисперсионного анализа состоит в сравнение «факторной дисперсии», то есть рассеяние, порождаемое изменением уровня фактора, и «остаточной дисперсии», обусловленной случайными причинами. Если их различие значимо, то фактор существенно влияет на Х и при изменении его уровня групповые средние различаются значимо. Если установили, что фактор существенно влияет на Х, а требуется выяснить, какой из уровней оказывает наибольшее воздействие, то дополнительно производим попарное сравнение средних. Дисперсионный анализ также применяется для установления однородности нескольких совокупностей (если математические ожидания одинаковы, то совокупности однородны). В более сложных случаях исследуют воздействие нескольких факторов на различные постоянные или различные уровни и выясняют влияние отдельных уровней и их комбинацию (многоуровневый анализ).

Будем считать, что количество наблюдений на каждом уровне фактора одинаково и равно q. Оформим результаты наблюдений в виде таблицы:

Номер

испытания

Уровни фактора Fj
F1F2Fp

1

2

q

x11

x21

xq1

x12

x22

xq2

x1p

x2p

xqp

Групповое

среднее

Сумму квадратов отклонения можно определить по формулам:

1. Общая сумма квадратов отклонений наблюдаемых значений от общего среднего [1]:

. (1)

характеризует влияние фактора F и случайных причин на Х.

2. Факторная сумма отклонений групповых средних от общей средней, характеризующая рассеяние между группами [1]:

. (2)

характеризует воздействие фактора F на величину Х.

Остаточная сумма квадратов отклонений наблюдаемых значений группы от своего группового среднего, характеризующая рассеяние внутри групп [1]:

. (3)

отображает влияние случайных причин на Х.

Вводя обозначения [1]:

, (4)

получим формулы, более удобные для расчетов [1]:

, (5)

. (6)

Разделив суммы квадратов на соответствующее число степеней свободы, получим общую, факторную и остаточную дисперсии [1]:

. (7)

Если справедлива гипотеза Н0, то все эти дисперсии являются несмещенными оценками генеральной дисперсии.

Вычисляем и сравниваем с Fкр (критерий Фишера - Снедекора) [1]:

Fкр (α; n-1; nk-(k-1)),

, (8)

где α – уровень значимости; n – количество факторов; k – количество испытаний.

Если Fнабл <Fкр, то гипотеза о равенстве дисперсий будет принята.

Если число испытаний на разных уровнях различно (q1 испытаний на уровне F 1, q 2 – на уровне F 2 , …, qр - на уровнеF р), то [1]:

, (9)

где сумма квадратов наблюдавшихся значений признака на уровне Fj,

сумма наблюдавшихся значений признака на уровне Fj .

При этом объем выборки, или общее число испытаний, равен . Факторная сумма квадратов отклонений вычисляется по формуле [1]:

. (10)

Остальные вычисления проводятся так же, как в случае одинакового числа испытаний [1]:

. (11)

1.2. Линейный множественный регрессионный анализ

Регрессионный анализ, по-видимому, наиболее широко используемый метод многомерного статистического анализа. Термин ''множественная регрессия'' объясняется тем, что анализу подвергается зависимость одного признака (результирующего) от набора независимых (факторных) признаков. Разделение признаков на результирующий и факторные осуществляется исследователем на основе содержательных представлений об изучаемом явлении (процессе). Все признаки должны быть количественными (хотя допускается и использование дихотомических признаков, принимающих лишь два значения, например 0 и 1).При поведении экспериментов в множественной ситуации исследователь записывает показания приборов о состоянии функции отклика (y) и всех факторов, от которых она зависит (xi).

При построении регрессионных моделей, прежде всего, возникает вопрос о виде функциональной зависимости, характеризующей взаимосвязи между результирующим признаком и несколькими признаками-факторами. Выбор формы связи должен основываться на качественном, теоретическом и логическом анализе сущности изучаемых явлений. Чаще всего ограничиваются линейной регрессией, т.е. зависимостью вида [2]:

Y=a0+a1x1+a2x2+…+anxn (12)

где Y - результирующий признак; x1, …, xn - факторные признаки; a1,…,an - коэффициенты регрессии; а0 - свободный член уравнения. aiнаходим методом наименьших квадратов, для этого рассматривается функции [2]:

(13)

Находим частные производные по неизвестным переменным, приравниваем к нулю и получаем систему уравнений. Решая систему, можем найти наименьшее значение функции.

Так как запись множественной регрессии (линейной) в матричной форме имеет вид [2]:

Y=X*A, (14)

где Y - это вектор-столбец опытных значений изучаемой характеристики; X –матрица всех значений всех рассматриваемых факторов, полученных при проведении измерений или наблюдений; А – вектор-столбец искомых коэффициентов аппроксимирующего полинома (12) [2]:

Y= ; (15)


X=; (16)

Y=; (17)

Тогда функционал F метода наименьших квадратов имеет вид [2]:

(18)

Для оценки адекватности рассчитанной регрессионной модели вычисляется коэффициент детерминации, он показывает, какая часть дисперсии функции отклика объясняется вариацией линейной комбинации выбранных факторов x1, x2 ,…, xj, xn[2]:

, (19)

где - прогнозные значения

и множественный коэффициент корреляции [2]:

. (20)

Значение коэффициента множественной корреляции оценивается с помощью таблицы 2 [1]:

Таблица Чеддока Таблица 2

диапазон измеренияхарактер тесноты
слабая
умеренная
заметная
высокая
весьма высокая

1.3. Множественный корреляционный анализ

Расчеты обычно начинают с вычисления парных коэффициентов корреляции, характеризующих тесноту связи между двумя величинами. В множественной ситуации вычисляют два типа парных коэффициентов корреляции:

1. - коэффициенты, определяющие тесноту связи между функцией отклика y и одним из факторов [2]:

. (21)

2. - коэффициенты, показывающие тесноту связи между одним из факторов xiи фактором xm(i, m=) [2]:

(22)

.

Значение парного коэффициента изменяется, как указывалось выше, изменяется от -1 до +1. Если, например, коэффициент - величина отрицательная, то это значит, что xiуменьшается с увеличением y. Если положителен, то xiувеличивается с увеличением y.

Значимость парных коэффициентов корреляции можно проверить двумя способами:

1)сравнение с табличным значениями [2]:

, (23)

2) по t-критерию Стьюдента [2]:

, (24)

Где - среднеквадратическая погрешность выборочного парного коэффициента корреляции [2]:

. (25)

Здесь определяется по таблице с числом степеней свободы .

Доверительный интервал для парных коэффициентов корреляции [2]:

, (26)

где - парный коэффициент корреляции в генеральной совокупности.

Если один из коэффициентов окажется равным 1, то это означает, что факторы xi и xmфункционально (не вероятностно) связаны между собой и тогда целесообразно один из них исключить из рассмотрения, причем оставляют тот фактор, у которого коэффициент больше.

После вычисления всех парных коэффициентов корреляции и исключения из рассмотрения того или иного фактора можно построить матрицу коэффициентов корреляции вида [2]:

. (27)

Используя матрицу (23) можно вычислить частные коэффициенты, которые показывают степень влияния одного из факторов xi на функцию отклика y при условии, что все остальные факторы закреплены на постоянном уровне. Формула для вычисления частных коэффициентов корреляции такова [2]:

, (28)

где - определитель матрицы, образованной из матрицы (27) вычеркиванием 1-й строки, i-го столбца. Определители , вычисляются аналогично. Как и парные коэффициенты, частные коэффициенты корреляции изменяются от -1 до +1.

2. Аналитическая часть

2.1. Сбор и первичная обработка данных

В ходе сбора материалов исследования, определенных выбранной темой, были получены статистические данные по динамике смертности всего населения Нерюнгринского улуса по классам болезней и возрастам. Классы заболеваний, в исходных данных имеют следующую классификацию:

I. Некоторые инфекционные и паразитарные заболевания;

II. Новообразования;

III. Болезни крови, кроветворных органов и отдельные нарушения, вовлекшие иммунный механизм;

IV. Болезни эндокринной системы, расстройства питания и нарушения обмена веществ;

V. Психические расстройства и расстройства поведения;

VI. Болезни нервной системы;

VII. Болезни глаза и его придаточного аппарата;

VIII. Болезни уха и сосцевидного отростка;

IX. Болезни системы кровообращения;

X. Болезни органов дыхания;

XI. Болезни органов пищеварения;

XII. Болезни кожи и подкожной клетчатки;

XIII. Болезни костно–мышечной системы и соединительной ткани;

XIV. Болезни мочеполовой системы;

XV. Беременность, роды и послеродовый период;

XVI. Отдельные состояния, возникающие в перинатальном периоде;

XVII. Врожденные аномалии (пороки развития), деформации и хромосомные нарушения;

XVIII. Симптомы, признаки и отклонения от нормы, выявленные при клинических и лабораторных исследованиях, не классифицированные в других рубриках;

XIX. Травмы, отравления и некоторые другие последствия воздействия внешних причин;

XX. Внешние причины заболеваемости и смертности.

После обработки этих данных была получена таблица 1 [см. Приложение], в которой представлено количественное изменение смертности по причинам различных заболеваний. В эту таблицу вошли следующие классы болезней: некоторые инфекционные и паразитарные заболевания, новообразования, болезни эндокринной системы, расстройства питания и нарушения обмена веществ, психические расстройства и расстройства поведения, болезни нервной системы, болезни системы кровообращения, болезни органов дыхания, болезни органов пищеварения, болезни костно–мышечной системы и соединительной ткани, болезни мочеполовой системы, беременность, роды и послеродовый период, врожденные аномалии (пороки развития), деформации и хромосомные нарушения, симптомы, признаки и отклонения от нормы, выявленные при клинических и лабораторных исследованиях, не классифицированные в других рубриках, травмы, отравления и некоторые другие последствия воздействия внешних причин, внешние причины заболеваемости и смертности.

Таким образом, функцией отклика является смертность населения в конкретной возрастной группе, а факторами, влияющими на ее изменение, являются классы заболеваний.

2.2. Дисперсионный анализ

Методом дисперсионного анализа, выясним, оказывает ли влияние различные заболевания на показатель смертности населения. То есть, проверим, выполняется ли гипотеза о равенстве математических ожиданий (Н0: М(Х1) = М(Х2) = … = М(Хр)). Для этого рассчитаем значения наблюдавшихся признаков и значения их квадратов для каждого заболевания по формуле (4). Затем, вычислив их сумму, результаты вычислений приведены в таблице 2 [см. Приложение]. Подставим в формулы (5), (6), получим значения общей и факторной дисперсий:

13498;

5906,7;

Эти значения подставляем в формулу (11) вычисляем остаточную сумму квадратов отклонений наблюдаемых значений группы от своего группового среднего.

7591,5

Теперь мы можем вычислить Fнабл, для этого используем формулу (8), и сравниваем с Fкр, который, смотрится по таблице критерия Фишера – Снедекора [1].

Fнабл =14, 1090;

Fкр(0,01; 15; 18)= 3,23.

Сравнивая полученные значения, мы делаем вывод о том, что различия между дисперсиями не значимо, то есть фактор (заболевания) оказывает существенное влияние на функцию отклика (смертность). Следовательно, среднее наблюдаемое значение на каждом уровне (групповые средние) различаются значимо.

2.3. Построение уравнения множественной регрессии

Следующим этапом, мы построим уравнение множественной регрессии. Для этого мы воспользовались Пакетом анализа данных для вычисления основных статистических параметров выборки. Для того чтобы отыскать команду вызова надстройки Пакет анализа в MicrosoftExcel, необходимо воспользоваться меню Сервис – Анализ данных.… В появившемся диалоговом окне выбрать пункт Регрессия. В поле Входной интервал Y: указать диапазон значений нашего у, в поле Входной интервал X: указать все значения наших x. В разделе параметры вывода указать Выходной интервал: ввести любую, удобную для вас ячейку. Результаты работы режима Регрессия представлен в таблице 3 [см. Приложение]. Таким образом, наше уравнение регрессии имеет вид:

2.4. Исключение незначимых факторов

Для того чтобы исключить заболевания, которые оказывают незначительное влияние на смертность население, вначале рассчитаем парные коэффициенты корреляции по формулам (21), (22), и построим корреляционную матрицу (см. таблицу 4 [Приложение]). Используя полученную матрицу, вычислим по формуле (28) частные коэффициенты корреляции, получим:

Ryx10,012345Ryx9-0,85883735
Ryx20,79942633Ryx10-0,9606058
Ryx30,01902545Ryx11-0,66239756
Ryx4-0,7279617Ryx12-0,81452592
Ryx50,25701348Ryx13-0,16934424
Ryx60,30479306Ryx140,9030776
Ryx7-0,9799582Ryx150,10681524
Ryx80,96909722Ryx160,97533032

Сравнивая частные коэффициенты корреляции и парные коэффициенты, исключаем незначительные факторы. Факторы, которые после сравнения этих коэффициентов оказались незначимы, можно исключить из уравнения регрессии. В уравнение регрессии, которое мы получили, таковыми оказались x1, x3, x4, x9, x10, x11, x12, x13 и x16. То есть инфекционные и паразитарные заболевания, болезни эндокринной системы, расстройства питания и нарушения обмена веществ, психические расстройства и расстройства поведения, болезни костно–мышечной системы и соединительной ткани, болезни мочеполовой системы, беременность, роды и послеродовый период, врожденные аномалии (пороки развития), отравления и некоторые другие последствия воздействия внешних причин, отдельные состояния, возникающие в перинатальном периоде не оказывают существенного влияния на смертность.

Так как мы исключили некоторые факторы, уравнение регрессии изменилось, поэтому необходимо вновь, воспользовавшись Пакетом Анализ данных, построить новое уравнение регрессии (см. таблицу 5 [Приложение]). Теперь уравнение представимо в виде:

Данное уравнение отображает функциональную связь между смертностью и различными классами заболеваний.


Заключение

В данной курсовой работе рассмотрены заболевания, влияющие на изменение смертности Нерюнгринского улуса. Были выбраны факторы, методом исключения эффектов, приводящие к высокой смертности. Применяя методы теории вероятностей и математической статистики, было построено уравнение, показывающее зависимость изучаемого явления (смертности) от выбранных факторов (классов заболеваний).

Проведя анализ полученной модели, выяснилось, что наиболее часто приводят к летальному исходу болезни системы кровообращения, таким образом, этот класс заболеваний стоит на первом месте. На втором месте стоят внешние причины заболеваемости и смертности, и на третьем – новообразования.

В заключении, необходимо отметить, что профилактика именно этих заболеваний приведет к уменьшению показателя летальности и позволит преодолеть демографический кризис.


Список литературы

1. Гмурман В.Е. Теория вероятностей и математическая статистика: Учеб. пособие для вузов. - М.: Высш. шк., 1997.

2. Львовский В.Н. Статистические методы построения эмпирических формул: Учеб. пособие для вузов. - М.: Высш. шк., 1988.

3. Вентцель Е.С. Теория вероятностей: Учебник для вузов. - М.: Высш. шк., 1999.

4. «Многомерный статистический анализ на ЭВМ с использованием пакета MicrosoftExcel»/М., 1997.

5. «Государственный доклад о состоянии здоровья населения Нерюнгринского улуса в 2006 году»; (редкол.:Вербицкая Л.И. и др.), 2007.


Приложение

Таблица 1

Исходные данные

XVI11241111111613111511251100
XV000000010202100000
XIV100011110154242132
XIII211010000000000000
XII400000000000000010
XI000001000000000000
X000000001000010000
IX000000100000000000
VIII000000133495362000
VII100002213562211010
VI010004181732474129593524218
V001000021012110000
IV000000000100000000
III000000010100000100
II000013028141720111512341
I000001020301010000
Количество смертей 733815292038507911088549856344520
Возрастдо года1-511-1717-19 20-2425-29 30-3435-3940-4445-49 50-54 55-59 60-6465-6970-7475-7980-8485 и более

Таблица 2

Факторный анализ

ВозрастIIIIIIIVVVIVIIVIIIIXX
R1P1R2P2R3P3R4P4R5P5R6P6R7P7R8P8R9P9R10P10
до года00000000000011000000
1-500000000001100000000
11-1700000000110000000000
17-19 00000000000000000000
20-2400110000000000000000
25-29 113900000041624000000
30-3400000000001124111100
35-39242411002486411390000
40-44008640000111728939390011
45-49 39141961111003210245254160000
50-54 00172890000114722096369810000
55-59 1120400000024411681245250000
60-6400111210000112984124390000
65-691115225000011593481116360011
70-74001214400000035122511240000
75-7900391100002457600000000
80-84004160000002144111000000
85 и более001100000086400000000
81611114793311913327119132791361901122
R1²64123219181106929729129614

Продолжение таблицы 2

XIXIIXIIIXIVXVXVI
R11P11R12P12R13P13R14P14R15P15R16P16
0041624110011
000011000011
000011000024
0000000000416
000011110011121
110000110011121
000000110011121
000000111116256
000000000013169
000000112411121
0000005250015225
0000004162411121
000000241124
00000041600525
000000240011
000000110011
001100390000
000000240000
115175729856101161308
125258413613456

I. некоторые инфекционные и паразитарные заболевания.

II. новообразования.

III. болезни эндокринной системы, расстройства питания и нарушения обмена веществ.

IV. психические расстройства и расстройства поведения.

V. болезни нервной системы.

VI. болезни системы кровообращения.

VII. болезни органов дыхания.

VIII.болезни органов пищеварения.

IX. болезни костно–мышечной системы и соединительной ткани.

X. болезни мочеполовой системы.

XI. беременность, роды и послеродовый период.

XII. отдельные состояния, возникающие в перинатальном периоде.

XIII.врожденные аномалии (пороки развития), деформации и хромосомные нарушения.

XIV.симптомы, признаки и отклонения от нормы, не классифицированные в других рубриках.

XV. травмы, отравления и некоторые другие последствия воздействия внешних причин.

XVI.внешние причины заболеваемости и смертности.



Таблица 3

Уравнение регрессии

Регрессионная статистика
Множественный R1,0000
R-квадрат0,9999
Нормированный R-квадрат0,9986
Стандартная ошибка1,2381
Наблюдения18,0000
Дисперсионный анализ
dfSSMSFЗначимость F
Регрессия16,000019025,41161189,0882775,73970,0282
Остаток1,00001,53281,5328
Итого17,000019026,9444
КоэффициентыСтандартная ошибкаt-статистикаP-ЗначениеНижние 95%Верхние 95%Нижние 95,0%Верхние 95,0%
Y-пересечение3,38991,23552,74380,2225-12,308219,0880-12,308219,0880
Переменная X 13,03622,28171,33070,4103-25,955632,0281-25,955632,0281
Переменная X 2-0,01080,5682-0,01900,9879-7,23017,2085-7,23017,2085
Переменная X 3-3,71723,5010-1,06180,4809-48,201140,7668-48,201140,7668
Переменная X 4-2,64439,9430-0,26590,8345-128,9822123,6936-128,982123,693
Переменная X 50,53241,66370,32000,8028-20,607121,6719-20,607121,6719
Переменная X 61,22900,24984,91940,1277-1,94544,4035-1,94544,4035
Переменная X 74,43061,12783,92860,1587-9,899218,7604-9,899218,7604
Переменная X 8-1,32170,7883-1,67660,3424-11,33858,6951-11,33858,6951
Переменная X 9-7,19332,0811-3,45650,1793-33,636519,2498-33,636519,2498
Переменная X10 2,47892,80360,88420,5391-33,144138,1020-33,144138,1020
Переменная X11 -6,20603,6940-1,68000,3418-53,142640,7307-53,142640,7307
Переменная X12 0,18950,94470,20060,8739-11,813912,1930-11,813912,1930
Продолжение таблицы 3
Переменная X13 -3,07901,4643-2,10270,2826-21,684315,5263-21,684315,5263
Переменная X14 3,62760,95773,78760,1643-8,541815,7969-8,541815,7969
Переменная X15 0,89222,21920,40200,7566-27,305329,0897-27,305329,0897
Переменная X16 1,03700,24714,19740,1489-2,10224,1763-2,10224,1763

Таблица 4

Оценка характера связи

f(x1,x2)yi-f(yi-f)²yi-y(yi-y)²
17,08524-0,085240,00727-35,055561228,89198
22,576990,423010,17894-39,055561525,33642
32,917420,082580,00682-39,055561525,33642
47,538050,461950,21339-34,055561159,78086
515,33512-0,335120,11230-27,05556732,00309
629,000000,000000,00000-13,05556170,44753
720,000000,000000,00000-22,05556486,44753
838,19841-0,198410,03937-4,0555616,44753
950,01632-0,016320,000277,9444463,11420
1079,000000,000000,0000036,944441364,89198
11109,884170,115830,0134267,944444616,44753
1287,619500,380500,1447845,944442110,89198
1354,56259-0,562590,3165011,94444142,66975
1497,983680,016320,0002755,944443129,78086
1556,35546-0,355460,1263513,94444194,44753
1633,801590,198410,03937-8,0555664,89198
1744,659040,340960,116252,944448,66975
1820,46642-0,466420,21755-22,05556486,44753
1,5328419026,94444

Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно