Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Вынужденное явление Рамана

Тип Реферат
Предмет Физика
Просмотров
1434
Размер файла
215 б
Поделиться

Ознакомительный фрагмент работы:

Вынужденное явление Рамана

Вынужденное явление Рамана

Рассеяние Рамана[1] в стоксову сторону.

Пусть пучок света падает на прозрачную среду, не содержа­щую никаких включений посторонних тел и тщательно очищенную. Даже при максимально возможной частоте свет пучка рассеивается во все стороны, хотя и очень слабо. Рассеяние имеет место как в газообразных, так и в жидких и твердых телах. В газах рассеяние проис­ходит, главным образом, на атомах и молекулах, в жид­костях и кристаллах—на флуктуациях и неоднородностях среды. В рассеянном свете имеются волны тех же длин, что и в падающем, но разной интенсивности в за­висимости от длины волны. Это рассеяние называется релеевским по имени Релея. Помимо рассеяния света с той же длиной волны наблюдается еще слабое свече­ние с длиной волны, большей, чем падающая,—рамановское рассеяние. Механизм этого явления можно объ­яснить на основе как квантовой теории, так, и классиче­ской волновой. Особенно просто выглядит квантовое описание этого явления.

Пусть квант излучения или, иначе, (поскольку , a ) рассеивается на молекуле, нахо­дящейся в основном состоянии с энергией возбуждая ее до одного из возможных для нее типов коле­баний с резонансной частотой . В результате рассеянный квант будет иметь меньшую энергию . Баланс энергии

(1)

позволяет рассчитать колебательные уровни моле­кулы. Рассеянный свет имеет частоту , мень­шую частоты падающего света . Следовательно, рамановские линии являются стоксовыми. Рассеяние на уже возбужденной молекуле маловероятно, потому что линии с большей частотой , т. е. антистоксовые, имеют столь малую интенсивность, что обычно незаметны. Ин­тенсивность рамановских линий рассчитывают на основе вероятности соответствующих переходов в единицу времени или же по энергии, лучше по гамильтониану взаи­модействия излучения с молекулами, или по волновым функциям трех состояний молекулы: исходного, промежуточного (после поглощения кванта ) и конечного (после испускания кванта ).

Волновой механизм рамановского рассеяния заклю­чается во взаимодействии молекулы, способной к опре­деленному резонансному колебанию с частотой (или к нескольким таким колебаниям), с падающей и рассеян­ной волнами. Колебание молекулы в простей­шем виде можно представить как колебание точки с ко­ординатой х (точка является одним из атомов молеку­лы, имеющим массу т), с коэффициентом затухания R и упругим усилием , возвращающим точку в положе­ние равновесия. Под влиянием внешней периодической силы , возникающей в результате взаимо­действия со случайным полем волны Е, создается коле­бательное движение, которое описывается уравнением

(2)

Легко показать, что для резонансной частоты решением этого уравнения является функция

(3)

Силу F можно рассчитать по энергии взаимодейст­вия наведенного момента молекулы аЕ с полем волны , а именно:

(4)

Случайное поле волны может быть выражено уравне­нием

(5)

где и —волновые векторы падающей и рассеянной волн, —пространственная координата, а —времен­ная координата. Сильное взаимодействие этой волны с молекулой может произойти только вблизи резонанса, а следовательно, при частоте в инфракрасном диапазо­не , которая является частотой биений. Поэтому для вычисления силы F мы будем использовать только ту часть общего выражения, которая содержит разностную частоту. Общее выражение имеет вид

Его решением аналогично выражению (3) будет

(6)

Колебания молекулы совершаются с частотой биений . Изменение х влечет за собой изменение поляризованности молекулы, что в электрическом поле падающей волны приведет к изменению дипольного момента

(7)

если отбросить член, связанный с генерацией второй гармоники. Энергия взаимодействия этого момента с рассеянной волной равна поле рассеянной вол­ны, мощность же рассеянной волны составит

(8)

где черта сверху означает усреднение во времени. Вы­полнив это простое действие, получим выражение

(9)

из которого видно, что для стоксовой линии, т. е. для , и рассеянная волна усиливается взаимодействием с молекулами, тогда как для антистоксовой линии, т. е. для , и рассеянная волна угасает.

Рассеяние Рамана в антистоксову сторону.

При возбуждении спектров Рамана лазерным светом в поло­сти резонатора возникают не только стоксовы линии, но и антистоксовы. Какие условия должны быть выпол­нены, чтобы произошло такое рассеяние?

Рассмотрим поле Е волны, состоящей из падающей волны с частотой и из двух рассеянных волн с часто­тами и . Амплитуды этих волн обозначим соответственно через , и , используя одинаковые индексы для волновых векторов и фаз. Случайное поле может быть описано выражением

(10)

Решая уравнение (2) с учетом выражений (4) для силы и (10) для поля волны, получаем

(11)

Мощности и , отдаваемые молекулой двум рассе­янным волнам—стоксовой и антистоксовой—вычислим так же, как и раньше:

(12)

(13)


Из выражения (12) видно, что в нормальных условиях опыта всегда , без дополнительных ус­ловий, связывающих волновые векторы. Это означает, что стоксово рассеяние не имеет ограничений по направ-

Антистоксово рассеяние

Стоксово рассеяние


Рис.1. Векторная схема вынужденного рамановского рассеяния как четырехфотонного процесса: .

Оба испускания, как стоксово, так и антистоксово, являются направленными.

лению. Иначе обстоит дело с антистоксовым рассеянием, которое описано выражением (13). При выполнении условия постоянный приход энергии к антисток­совой волне будет гарантирован только в том случае, если

(14)

также если

(15)

Интенсивность антистоксовой линии достигает максиму­ма для ; направление ее эмиссии определяет­ся равенством (14).

Удивительным свойством антистоксова излучения, вытекающим из выражения (14), является тот факт, что эмиссия происходит только в определенном направ­лении, а именно под углом к направлению , т. е. к направлению падающего света. Это показано на рис.1. Волновой вектор имеет величину, равную

(16)

где и скорость света в данной среде и ее коэф­фициент преломления. Точно так же

и (17)

где означает, как и ранее, частоту колебаний молеку­лы. Введем еще две разности коэффициентов прелом­ления, характеризующих среды, а именно:

(18)

Из векторной диаграммы, представленной на рис.1, можно определить согласно теореме Карно:

Используя выражения (16)—(18), а также приняв, что

получим приближенное соотношение для малых углов :

(19)

Согласно этому выражению антистоксов свет рассеива­ется вдоль конуса, ось которого совпадает с направле­нием падающего света, а —угол между этим направ­лением и направлением образующей конуса. На экране,

Красное

Оранжевое

Желтое

Зеленое

Пленка

Батарея

конденсаторов


Рис. 2. Вынужденное рамановское рассеяние в нитробензоле.

Рассеяние в антистоксову сторону наблюдается в виде концентрических колец, окружающих пучок света лазера. Последующие кольца соответствуют рассея­нию с большей частотой (более короткой длиной волны). Стоксово рассеяние имеет различные направления, но наибольшая интенсивность света приходит­ся на направление падающего пучка.

установленном перпендикулярно к направлению падаю­щего луча, виден яркий цветной круг. Опыт показывает, что если кювету с жидкостью, например нитробензолом, поместить между сферическими зеркалами резонатора Фабри—Перо рубинового лазера, то стоксово рассеяние будет иметь место в инфракрасной области. Для рас­пространения его не характерно какое-либо определен­ное направление; в основном это направление падающе­го луча, тогда как антистоксово рассеяние образует ряд световых конусов с цветовой гаммой, от красного до го­лубого. Ближайший из них соответствует частоте , последующие — частотам , и т. д. (рис. 2).

Механизм рамановского рассеяния в антистоксову сторону.

Уравнение (14) и иллюстрирующий его рис. 1 показывают, что процесс рамановекого рассея­ния в резонаторе лазера является четырехфотонным процессом, в котором два фотона лазерного света исче­зают, а вместо них появляются два новых фотона: стоксов и антистоксов. В четырехфотонном процессе как

Рис. 3 Векторная схема вынужденного рамановского рассеяния как двухфотонных процессов с участием фононов разных направле­ний и величин.

Стоксово рассеяние имеет различные направления, тогда как антистоксово — лишь одно определенное направление.

, так и имеют точно определенные направления. В то время как действительно точно определенное на­правление имеют антистоксовы фотоны , стоксовы фотоны рассеиваются в различных направлениях, главным 0'бразом в направлении падающего луча. По­этому Цайгер с сотрудниками предложил двухсту­пенчатый механизм процесса рамановского рассеяния. При этом каждая ступень является двухфотонным про­цессом, в котором принимают участие два фотона и фотон . Последнему соответствует волновой вектор волны, возникающей из когерентных колебаний молекул, возбужденных падающей оптической волной. Первая ступень заключается в образовании стоксова фотона и фонона из первого лазерного фотона:

(20)

Вторая ступень заключается в образовании антистоксова фотона из другого лазерного фотона и соответствующего фонона:

(21)

На первой ступени образуются стоксовы фотоны (с заранее определенной энергией ), различно на­правленные, и соответствующие им фононы (рис. 3). На второй ступени может произойти поглощение только такого фонона, который даст антистоксов фотон , имеющий соответствующее определенное направле­ние, если только этот фотон отвечает уравнениям (20) и (21), а следо­вательно, и условию (14). Другие фононы не приводят к испусканию антистоксоъа фотона. Поэтому антистоксово рассеяние имеет значительный максимум в определенном направлении. На рис. 4 представлены результаты исследований упомянутых авторов. Они исследовали интенсивность трех стоксовых линий S1, S2 и S3, а также первой антистоксовой линии AS1 в зависимости от угла рассеяния. Показано, что:

0 1,0 2,0 3,0 4,0 5,0 Отклонение от оси, пучка, град.

1. Первая стоксова линия S1 обнаруживает наибольшую интенсивность в направлении лазерного луча. По мере возрастания угла интенсивность уменьшается и не обнаруживает другого максимума ни в каком определенном направлении. (Появление максимумов у последующих стоксовых линий S2 и S3, а также очень слабых максимумов на линии S1 имеет особую причину, которую мы здесь не будем обсуждать.)

2. Соответствующая первой стоксовой линии S1 первая антистоксова линия AS1 обнаруживает сильный максимум интенсивности под углом рассеяния около 3,0°.Как видно, антистоксово рассеяние не происходит в исправлении падающего света, а после максимума быстро спадает до нуля.

Эти два факта согласуются с двухступенчатым про­цессом вынужденного рамановского перехода.

Рис. 4. Угловое распределение интенсивности первых трех сток­совых линий и первой антистоксо­вой линии в нитробензоле.

Антистоксова линия 635 мм к (кривая AS1), стоксовы линии: 765 ммк (кривая S2), 853 ммк (кривая S2), 964 ммк (кривая S3).


[1] Комбинационное рассеяние, или эффект Рамана — Мандельш­тама, называемое автором рамановским рассеянием или рассеянием Рамана, наблюдалось индийским ученым Раманом на жидкостях в 1926 году и советскими физиками Мандельштамом и Ландсбергом на кристаллах кварца в 1927 г.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
149536
рейтинг
icon
3150
работ сдано
icon
1362
отзывов
avatar
Математика
Физика
История
icon
144452
рейтинг
icon
5909
работ сдано
icon
2669
отзывов
avatar
Химия
Экономика
Биология
icon
98694
рейтинг
icon
2055
работ сдано
icon
1281
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
57 288 оценок star star star star star
среднее 4.9 из 5
ННГУ им. Лобачевского
работа выполнена по всем заданным критериям, очень быстро, замечаний от преподавателя не б...
star star star star star
КГТА им.В.А. Дегтярёва
Работа выполнена профессионально и раньше срока. Советую исполнителя как специалиста.
star star star star star
Санкт-Петербургский государственный университет аэрокосмического приборостроения
Работа выполнена досрочно, согласно всем требованиям. Исполнитель общительный, всё замечан...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Развитие проектного финансирования в россии

Курсовая, Финансирование бизнеса

Срок сдачи к 6 янв.

только что

Решить задачу- найти опорные реакции рамы

Решение задач, техническая механика

Срок сдачи к 7 янв.

только что

Помощь на зачете по анализу данных

Онлайн-помощь, Анализ данных, информатика

Срок сдачи к 27 дек.

1 минуту назад

Интегралы, ряды, комплексные числа

Решение задач, Высшая математика

Срок сдачи к 26 дек.

2 минуты назад

Антиплагиат - 65%, требуется отредактировать курсовую

Курсовая, Самоменеджмент

Срок сдачи к 26 дек.

2 минуты назад

Курсовая работа

Курсовая, Химическая обработка ЦБП, химия

Срок сдачи к 11 янв.

3 минуты назад

MS Access Диспетчер городской телефонной сети

Курсовая, Информационные системы

Срок сдачи к 31 янв.

3 минуты назад

решить задания с листа

Другое, химия

Срок сдачи к 26 дек.

3 минуты назад

курсовая работа

Курсовая, Операционный менеджмент

Срок сдачи к 7 янв.

5 минут назад

ответить

Контрольная, Общая психология

Срок сдачи к 29 дек.

7 минут назад

Обработка детали в программе TopSolid.

Лабораторная, Сапр, инженерная графика

Срок сдачи к 27 дек.

8 минут назад

ответы

Контрольная, Основы педагогики

Срок сдачи к 29 дек.

9 минут назад

Нужна схема для курсовой

Контрольная, проектирование, информатика

Срок сдачи к 27 дек.

9 минут назад

Помочь выполнить контрольною по геометрии

Контрольная, Геометрия

Срок сдачи к 29 дек.

10 минут назад

6ч утра, 4 задачи, производные, дифференциал

Онлайн-помощь, Математический анализ

Срок сдачи к 27 дек.

11 минут назад

Курсовая работа (прошу ознакомиться с работай полностью и только потом назначать цену)

Курсовая, Экспертиза продукции, управление качеством

Срок сдачи к 24 янв.

11 минут назад

Вариант 10 Сделать все задачи по моему варианту

Контрольная, финансовая математика

Срок сдачи к 10 янв.

11 минут назад

Решите задачи с указанием статьи

Решение задач, Право

Срок сдачи к 27 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно