Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Расчет индуктивности

Тип Реферат
Предмет Физика
Просмотров
578
Размер файла
83 б
Поделиться

Ознакомительный фрагмент работы:

Расчет индуктивности

Контрольная работа

по курсу «Компоненты электронной техники»

Тема: «Расчет индуктивности».


Методы расчета индуктивностей

Индуктивностью (коэффициентом самоиндукции) называют коэффициент пропорциональности между током и возбуждаемым им потокосцеплением. Если речь идет об отношении потокосцепления одного из двух контуров в силе обусловливающего его тока в другом контуре, то говорят о взаимной индуктивности (коэффициенте взаимной индуктивности).

Поскольку индуктивность, как это следует из определения, зависит от распределения тока в проводниках, при ее расчете надо учитывать влияние частоты. Под низкой частотой понимается такая, при которой можно пренебречь неравномерностью распределения тока по сечениям проводов; длина электромагнитной волны при этом значительно больше линейных размеров сечения. Под весьма высокой частотой понимают частоту, длина волны которой значительно меньше размеров поперечного сечения провода; при этом ток можно считать сосредоточенным в поверхностном слое нулевой толщины. Высокие частоты занимают промежуточное положение.

С практической точки зрения целесообразно рассмотреть отдельно методы расчета индуктивности воздушных контуров, катушек с замкнутыми сердечниками и катушек с сердечниками, имеющими воздушный зазор.

Воздушные контуры

Под воздушными контурами подразумевают такую систему проводов, для которых магнитная проницаемость равна проницаемости окружающей среды. Расчет в общем случае сводится к следующему. Задаваясь токами в рассматриваемых контурах, разбивают каждый из токов на элементарные нити и на основе закона Био-Савара определяют индуктивность в выбранной точке поля. По ее значению находят поток, сцепляющийся с какой-нибудь нитью тока, затем вычисляют полный магнитный поток, сцепляющийся с рассматриваемым контуром и определяемый соответствующим током.

Если справедливо предположение, что ток распределен равномерно по сечению или по поверхности провода, применяют вариант метода, заключающийся в следующем. Поток, сцепляющийся с какой-нибудь нитью тока, выражают как сумму потоков взаимной индукции, создаваемых другими нитями, причем суммирование должно быть распространено на все нити данного контура при вычислении взаимной индуктивности. При этом получают выражения, содержащие в явном виде указания на необходимые математические операции.

Таким образом, имеем

;

;

,

где L и M – собственная и взаимная индуктивности; di – нити тока; dl – элементы длины нитей; Ө - угол между элементами; μ0 – магнитная постоянная.

Сложность расчетов приводит к тому, что выше приведенным методом определяют индуктивность либо проводов простой формы, либо участков, составляющих сложные контуры. В последнем случае индуктивность контура состоит из суммы индуктивностей всех участков и двойной суммы взаимной индуктивности между участками, т.е.

(k ≠ i),

где n – число участков.

Получение расчетных соотношений для индуктивности возможно на основе и иных соображений. По определению индуктивность

,

где I – ток; Ψ – обусловленное им потокосцепление; ω – число витков; G – некоторая величина, являющаяся функцией геометрических размеров системы и имеющая размерность магнитной проводимости.

Если частные потоки сцепляются со всеми витками, то для расчета индуктивности берется проводимость пространства, в котором рассматривается суммарный поток.

Расчет индуктивностей катушек выполняют по одному из двух методов суммирования или массивного витка. Метод суммирования, заключающийся в учете частичных собственных и взаимных индуктивностей отдельных витков, не имеет явных преимуществ и применяется довольно редко (главным образом для численных расчетов катушек сложной формы). Методом массивного витка сравнивают индуктивность рассматриваемой катушки с индуктивностью массивного витка, имеющего такую же форму и размеры, при этом предполагая, что коэффициент заполнения равен единице. Таким образом, находят расчетную индуктивность, к которой затем вычисляют поправки на изоляцию.

Катушки с замкнутыми магнитопроводами (сердечниками). Расчет индуктивности катушек в магнитопроводах замкнутой формы осуществляют по общим соотношениям для магнитных цепей. В конечном своем виде эти соотношения отличаются от результатов, полученных для воздушных катушек, наличием множителя, учитывающего свойства сердечника и равного его магнитной проницаемости.

Для получения практических формул принимают, как правило, что весь магнитный поток проходит через магнитопровод (без утечек и рассеивания), а средняя магнитная силовая линия пронизывает центры масс поперечных сечений магнитной цепи (т. е. совпадает со средней линией магнитопровода). Исключением являются особые случаи, например катушки на сердечниках тороидальной формы с неполной обмоткой.

Если для какой - либо цепи возможно интегральное определение формализованной магнитной проводимости (или сопротивления), для вычисления индуктивности можно использовать формулу

,

связывающую индуктивность с магнитным сопротивлением RM, в виде

,

где SM- площадь поперечного сечения магнитопровода;lM- длина средней магнитной силовой линии; μa- абсолютная магнитная проницаемость материала сердечника.

Катушки с сердечниками, имеющими воздушный зазор

Для магнитопроводов с большим воздушным зазором необходимо учитывать отклонение распределения поля в зазоре от идеализированного. При этом магнитные сопротивления для основного потока и потока рассеивания становятся соизмеримыми, и расчетные формулы существенно усложняются.

Поэтому для таких катушек применяют различные приближенные методы, основанные либо на аппроксимации картины поля простыми геометрическими фигурами, либо на выборе так называемых расчетных полюсов, либо на использовании картин плоскопараллельных полей.

На практике удобно применять метод эквивалентного зазора, позволяющий использовать все формулы для сердечников с малыми зазорами. При этом эквивалентным зазором называют такой, который имеет ту же проводимость, что и реальный, а геометрия его определяется сечением полюсов магнитопровода и некоторой эквивалентной длиной. Эквивалентную длину находят из условия равенства проводимости на основе аппроксимации возможных путей потока.

Применительно к элементам радиоэлектронных цепей случай больших зазоров встречается сравнительно редко (исключение – катушки на стержневых сердечниках), и большая точность расчетов при этом не требуется. Индуктивность катушек на стержневых сердечниках определяют с помощью магнитной проницаемости тела (сердечника), выражаемой через коэффициент размагничивания. В этом случае коэффициент размагничивания равен проводимости (формально введенной) окружающего сердечник пространства при условии, что весь поток проходит через торцы сердечника.

Если известен для данного сердечника коэффициент размагничивания, то индуктивность катушки легко найти путем рассмотрения магнитной цепи, состоящей из двух участков с известными магнитными сопротивлениями.

В тех случаях, когда для расчетов используют коэффициент размагничивания, в формулы вместо μr подставляют μ0 (относительную магнитную проницаемость сердечника)

,

где N – коэффициент размагничивания.

Основная сложность заключается в определении коэффициентов размагничивания, зависящих в общем случае от геометрических размеров сердечника, магнитных свойств материала сердечника и характера распределения намагничивающего поля катушки.

Индуктивность воздушных катушек и тел специальной формы

Рассмотрим формулы для расчета индуктивности элементов, для которых магнитная проницаемость равна проницаемости окружающего пространства. Под общим названием «тела специальной формы» объединены элементы, не являющиеся катушками в собственном смысле, но входящие в состав цепей РЭА (провода, электроды, кабели и т. д.). Предполагается, что проводники выполнены из немагнитного материала.

Все линейные размеры приведены в сантиметрах, индуктивность в микрогенри.

Однослойная воздушная катушка со сплошной намоткой.

при < ,

где d – диаметр катушки; l – длина катушки; ω – число витков катушки;

при > 5.

Многослойная воздушная катушка:

;

где dср – средний диаметр катушки; h – высота катушки; t – радиальная ширина намотки; ∆ L – поправка на заполнение:


,

где dиз – диаметр провода в изоляции; dм – диаметр провода по меди.

Катушка со спиральной намоткой ленточным проводом.

Расчет индуктивности практически совпадает с расчетом L для многослойной катушки с теми же наружным и внутренним диаметрами, высотой и коэффициентом заполнения. Вместо числа витков в формулу подставляют число слоев ленточной катушки.

Соленоид на каркасе прямоугольного сечения:

при ;

a, b – стороны поперечного сечения каркаса, a < b; l – длина катушки; k1 - на рис 1;

при ;

где ; .

Значение поправок α1 и α2 приведены в таблице 1.

Табл. 1. Значения поправок α1 и α2.

a/b0,10,20,30,40,50,60,70,80,91,0
α10,1120,1830,2380,2850,3250,3610,3930,4220,4490,473
α20,0160,0320,0480,0640,0800,0960,1110,1270,1430,159

Погрешность расчетов индуктивности для l / b ≥ 1 определяют по рисунку 2, где ε – верхняя оценка относительной погрешности.

Для некоторых сочетаний l / b и a / b значения k2 приведены на рис. 3.

Плоские катушки со спиральной намоткой

1. Катушка с круглыми витками:

при ;

при ,

где dср – средний диаметр намотки; t – радиальная ширина намотки; k – на рис. 4.

2. Катушка с квадратными витками:

,

где aср – дли средней стороны квадрата.

3. Поправка на шаг намотки

;

,

где p – шаг намотки; dM– диаметр провода по меди (или диаметр равновеликого сечения); ∆2 – в табл. 2.


Табл. 2. Формулы для расчета поправок ∆1 и∆2

для ленточных проводов.

Вид провода ∆1∆2

Тонкая лента

(с ≤ 0,1 b)

Лента квадратного сечения (b = c)

ln - k

значение k по графику

k – 2n + ()2 *(0,6 – )+ + * ( - 2,5 ) (0,08 - )

значения n по графику

k – 2 m – 0,2 ()4 * (0,08 - ),

значение m

Плоские контуры:

1. Круговое кольцо из провода кругового сечения:

,

где D – диаметр кольца по центру сечения; d – диаметр провода.

2. Круговое кольцо из провода квадратного сечения:

;

где a – сторона поперечного сечения провода.

При высоких частотах

.


3. Круговое кольцо из тонкой ленты:

,

где а – ширина ленты.

4. Контур в виде правильного многоугольника (при условии, что длина провода значительно больше периметра его сечения):

,

где l – длина провода; A = 4l/ d – для круглого провода с диаметром d; A = 2 l / (a + b) – для провода прямоугольного сечения со сторонами а и b; В – коэффициент, зависящий от числа сторон n. Его значения в табл. 3.

Табл. 3. Зависимость коэффициента В от числа сторон многоугольника n.

N34568
B3,1972,8532,7122,6362,561

Формулой можно воспользоваться также для расчета индуктивности кругового витка, принимая В = 2,451.

Одиночный прямолинейный провод:

1. Провод кругового сечения.

На низких частотах

, при ,

где l – длина провода; погрешность расчета по формуле не более 5%.

При высоких частотах


, при ,

погрешность формулы не более 6%.

2. Провод прямоугольного сечения.

На низких частотах

,

где a, b – стороны поперечного сечения провода.

Приближенно на высоких частотах

при ;

при .

3. Полый провод круглого сечения:

,

где D – наружный диаметр провода; d – внутренний диаметр провода; k – коэффициент, значения которого в табл. 3.

Табл. 3. Зависимость k от географических размеров катушки.

d / D0,00,10,20,30,40,5
k0,7790,7820,7930,8090,8290,852
d / D0,60,70,80,91,0
k0,8780,9060,9360,9671,000

На высоких частотах формула остается справедливой, если принять k = 1.

4. Полый провод квадратного сечения.

На низких частотах

.

На высоких частотах

,

где l – длина провода; а – внешняя сторона контура поперечного сечения; t- толщина стенки ().

Система прямолинейных проводов:

1. Два параллельных провода (прямой и обратный):

а) для проводов круглого сечения одинакового диаметра на низких частотах

.

На высоких частотах

,

где t – расстояние между осями проводов; d – диаметр провода; l – длина провода.

б) для одинаковых проводов прямоугольного сечения на низких частотах

L = 4*10-3,

где t – расстояние между центрами сечений; a и b – стороны сечения.

в) для проводов различных сечений

L = L1 + L2 – 2M,

где L1 и L2 – индуктивности каждого провода; М – взаимная индуктивность.

2. Проводник – земля. Индуктивность определяют по формулам параллельных проводов; значение ее вдвое меньше, чем вычисленное для системы прямого и обратного проводов при t = 2h (h – расстояние до поверхности земли).

Формулы справедливы при h »λ33 – длина электромагнитных колебаний в земле).

Для приближенных расчетов

L = 2*10-3l.

3. Коаксиальный кабель:

L = 2*10-3l,

где l – длина кабеля; D – внутренний диаметр наружного цилиндра; d – внешний диаметр внутреннего цилиндра; k – коэффициент, зависящий от частоты.

4. Пучок равноудаленных параллельных проводов (ориентировочно):


L=,

где n – число проводов; d – диаметр отдельного провода; R – радиус размещения проводов (расстояние от центра пучка до центра любого провода);

K =.

Значение К в зависимости от числа проводов n приведены в табл. 4

Табл. 4. Зависимость К от числа проводов n.

n23457101215
K0,560,490,440,410,360,310,300,28

Конденсаторные секции.

1. Плоская конденсаторная секция:

,

где l – длина электрода; d – толщина диэлектрода; b – ширина диэлектрода.

Предполагается, что b»d»a (а – толщина электрода).

Если имеет место только неравенство d«b»a, то

.

2. Плоская конденсаторная секция, состоящая из нескольких параллельно соединенных элементов:


,

где l – длина секции (в направлении между торцами обкладок); , где a и b – ширина и толщина секции.

3. Цилиндрическая намотанная секция с выступающими обкладками (так называемая безындукционная намотка). Расчет индуктивности можно проводить по формуле для провода круглого сечения, принимая, что l – длина секции (в направлении между торцами обкладок), d – наружный диаметр секции.

Провод кругового сечения, изогнутый по дуге окружности:

,

где R – радиус окружности, по дуге которой изогнут провод; Ө - центральный угол, соответствующий длине провода; 0≤Ө≤2π; d – диаметр провода; k1 – коэффициент, которого на рис. 4; k2 = 1,02 для низких и средних частот; k2 = 0,77 для высоких частот.

В частном случае, когда

«1,

Катушки индуктивности на замкнутых сердечниках

Сердечники тороидальной формы

1. Обмотка на каркасе. При массивных измерениях магнитных параметров сердечников иногда используют разъемные обмотки, вмонтированные в каркас прямоугольного сечения, внутрь которого помещают тороидальные сердечники (табл. 5.).

Табл. 5. Расчет индуктивности катушек на сердечниках тороидальной формы.

Вариант геометрии сечения
Приближенные формулы
Уточненные формулы
Отношение величин h, вычисленных по приближенным формулам, к величинам, вычисленным по уточненным формулам.

Связь между магнитной проницаемостью материала сердечника μrи индуктивностью катушки L в этом случае устанавливает формула

,

где S и SК – площади поперечных сечений сердечников и каркаса;

,

где DK и dK – наружный и внутренний диаметры каркаса.

3. Неполная обмотка (рис. 4.).


;

;

где S – сечение магнитопровода; lср – длина средней линии магнитопровода; pср – периметр среднего витка.

Катушки индуктивности на разомкнутых сердечниках

Катушки на сердечниках с малыми зазорами.

Приведенные формулы справедливы при условии δ « а, где δ – ширина зазора; а – любой линейный размер поперечного сечения магнитопровода:

; μr > 1;

r » 1;

; μr→ ∞,

где N – коэффициент размагничивания.

Сердечники с большими воздушными зазорами.

Формулы для случая малых зазоров были выведены в предположении, что поле в зазоре близко к однородному и величина потоков рассеяния пренебрежимо мала по сравнению с рабочим потоком. Если же магнитопровод содержит воздушный зазор, для которого не выполняется условие δ « а, то с целью сохранения формы записи соотношений для расчета магнитной цепи, справедливых при малых зазорах, целесообразно ввести понятие об эквивалентном зазоре.

Наиболее удобным, оказалось, определить эквивалентный зазор как такой, который имеет ту же проводимость, что и реальный; а геометрия его определяется сечением полюсов магнитопровода и некоторой эквивалентной длиной δЭ. при этом все формулы для сердечников с зазором остаются справедливыми при подстановке в них δЭ вместо δ.

На практике часто встречаются полюса магнитопровода в виде двух прямоугольных призм, расположенных друг против друга. Выражение для δЭ в этом случае имеет вид

(обмотка не перекрывает зазора) или

(обмотка перекрывает зазор), где δ – геометрическая длина зазора; p – периметр сечения магнитопровода у зазора; S – сечение магнитопровода у зазора (т. е. сечение полюса); 2с – высота обмотки; а – расстояние от сердечника до средней линии продольного сечения обмотки (т. е. приближенно полуширина обмотки).

Катушки индуктивности с немагнитными сердечниками

Немагнитные сердечники в катушках индуктивности используются в качестве элементов подстройки при работе в области высоких частот. Влияние таких сердечников на параметры катушек аналогично влиянию экрана, т.е. приводит к уменьшению индуктивности и добротности и к увеличению вносимого сопротивления и емкости.

Экран и немагнитный сердечник могут в известном приближении рассматриваться как короткозамкнутый виток, индуктивно связанный с катушкой.

Потери в катушках индуктивности. Добротность

Определение потерь в катушках индуктивности является существенны, главным образом, с точки зрения их влияния их (потерь) на характеристики схемы, в которую катушки входят. Значительно реже вычисление потерь представляет интерес с точки зрения мощности, дополнительно затрачиваемой источником питания (или источником сигнала); эта мощность может, кроме того, привести к нежелательному изменению теплового режима элементов.

Общая формула для добротности имеет вид

,

где Rэ – эквивалентное сопротивление, учитывающее потери в катушке (в обмотке и сердечнике).

В связи с тем, что катушки обладают собственной емкостью, существует некоторая частота ƒ0 (собственная, или резонансная), вблизи которой емкость оказывает существенное влияние на добротность (из-за изменений действующих индуктивности и сопротивления).

Влияние собственной емкости на добротность катушки описывается формулой

∆Q = -Q (ƒ / ƒ0)2,


где ∆Q – уменьшение добротности Q при работе на частоте ƒ < ƒ0.

Из-за приближенного характера формул для определения ƒ0 и для учета его влияния на добротность практически величиной ∆Q можно пренебречь уже при ƒ ≤ ƒ0 / 3.

Потери в катушках складываются из следующих составляющих: потери в проводе; диэлектрические потери в каркасе и изоляции провода; потери в сердечнике.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно