Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Твердофазный синтез перрената калия (WinWord97/2000)

Тип Реферат
Предмет Химия
Просмотров
972
Размер файла
43 б
Поделиться

Ознакомительный фрагмент работы:

Твердофазный синтез перрената калия (WinWord97/2000)

Московский Государственный Университет

им. М.В. Ломоносова

Твердофазный синтез K3ReO5.

Курсовая работа студентки 107 гр.

Кабановой К.В.

Руководитель доц. Куликов Л.А.

Преподаватель проф. Киселев Ю.М.

Москва, МГУ, Химический факультет, 2000.

Оглавление.

Введение………………………………………………………3

Обзор литературы…………………………………………….4

Экспериментальная часть………………………………...…17

Выводы……………………………………………………….20

Список литературы…………………………………………..21

Приложения…………………………………………………..22

1. Введение.

В настоящий момент большой интерес представляет уже не столько изучение свойств веществ, в которые специально были введены какие-то добавки (иногда это очень сильно меняет свойства исходного вещества), но и то, как ведут себя сами примесные вещества в данной матрице.

Отсюда следует проблема синтеза матрицы, свойства и параметры которой заранее известны, в которую можно было бы ввести метку, изучив которую можно было бы говорить о том, как повлияла матрица на эту добавку. Одной из задач является матричная стабилизация необычных для вещества метки состояний.

Разумеется, матрица своими параметрами должна соответствовать параметрам метки, чтобы стабилизация была возможной. Свойства матричного вещества должны также отвечать тому способу синтеза, при котором будет возможным введение определенного количества добавки.

Методом матричной стабилизации можно воспользоваться, чтобы получить в устойчивом виде ион Fe7+ . Его ионный радиус должен быть <0.25 А. Подходящей для него матрицей могло бы послужить соединение Re7+( 0.38 A). Превышение радиуса семивалентного рения над ожидаемым радиусом Fe7+довольно существенно (>15%), чтобы замещение, а вместе с ним и образование семивалентной формы железа могло бы произойти.

Целью данной работы был твердофазный синтез K3ReO5в качестве матрицы для стабилизации железа в семивалентном состоянии.

2. Обзор литературы.

2.1Рений.

По внешнему виду рений напоминает платину, но обычно его получают в виде порошка серого цвета. Re – наиболее тугоплавкий из всех металлов, за исключением W (Тпл 3380оС). Кристаллизуется в гексагональной плотной упаковке. [3]

Известны природные изотопы 187Re, 185Re и искусственные изотопы 186Re, 188Re, 189Re, 184Re. [10]

Рений обладает парамагнитными свойствами, практически не зависящими от температуры. [4] Обладает высокой электронной эмиссией, является электрическим полупроводником. При 1630оС электронная эмиссия рения выше, чем у вольфрама. [10]

Устойчивыми соединениями рения являются соединения Re+4, Re+6и особенно Re+7. В природе рений встречается в виде соединений Re+4 (ReS2, CuReS4 - джезказгенит).

Электропроводность рения – 4.5.

Потенциалы ионизации рения (эВ)

I II III IV V VI VII
7.87(13.2)(26.0)(37.7)(50.6)(64.5)(79.0)

Сродство к электрону атома рения оценивается в 3 ккал/моль, а рвбота выхода электрона из металла равна 4.80 эв. [13]

Металлический компактный рений устойчив на воздухе при комнатной температуре. Окисление рения происходит при 600оС, а в атмосфере кислорода при нагревании свыше 400оС металл сгорает. Появление белого дыма свидетельствует об образовании оксида рения (VII), который очень летуч. Во влажном воздухе рений медленно окисляется, причем конечным продуктом является рениевая кислота. Рений устойчив в атмосфере водорода, в восстановительных и нейтральных средах. Порошок рений адсорбирует водород. С азотом рений не реагирует даже при высоких температурах. Рений энергично взаимодействует с галогенами, причем сила взаимодействия уменьшается от фтора к брому. [11] Взаимодействие металлического рения с фтором и хлором начинаются уже выше 100оС, с бромом – выше 300оС. [13] При этом не образуется соединений рения высшей валентности. Рений взаимодействует с серой, фосфором и мышьяком при повышенных температурах с образованием сульфидов, фосфидов и арсенидов. [11] Образование ReS2при взаимодействии рения с серой начинается около 400оС. [13]

Рений обладает высокой коррозионной стойкостью во влажных средах, не растворяется при комнатной температуре в растворах соляной, серной и фтористоводородной кислот. Горячая серная кислота реагирует с рением, переводя его в рениевую кислоту. Довольно легко рений растворяется в бромной воде при слабом нагревании. [11] Типичные окислители более или менее легко переводят Re в HReO4или ее соли. Щелочная среда сама по себе на рений не действует, но сильно способствует его окислению. [13]

Металлический рений хорошо растворяется в азотной кислоте, а также перекиси водорода с образованием рениевой кислоты :

3 Re + HNO3 = 3 HReO4 + 7 NO + 2 H2O

2 Re + 7 H2O2 = 2 HReO4 + 6 H2O [11]

Рений рассеян и не образует собственных минералов, его извлекают из бедных руд, содержащих сотые доли процента Re. Наибольший процент Re содержит молибденит ( MoS2 ) – Mo и Re в степени окисления +4 имеют близкие величины радиуса атомов и оба тяготеют к сере.

Чистый металлический рений получают восстановлением водородом перренатов, чаще всего перрената аммония :

2 NH4ReO4 + 7 H2 = 2 Re + 8 H2O + 2 NH3

Возможно также получение металлического рения электролизом перрената калия в сернокислом растворе, а также путем термической диссоциации Re3Cl9на вольфрамовой нити и др.

Рений образует большое число комплексных соединений. Например, галогенидные комплексные соединения шести-, пяти-, четырех- и трехвалентного рения обладают различной устойчивостью на воздухе и в водных растворах. Устойчивость комплексных соединений рения в различных валентных состояниях повышается в присутствии неорганических и органических лигандов, стабилизирующих соответствующие валентные состояния.

Применение металлического Re обусловлено его тугоплавкостью, высокой температурой кипения, механической прочностью и химической инертностью по отношению к некоторым газам. Все это делает Re ценным материалом электроники и электротехники.

Мелкодисперсный Re используют в качестве катализатора гидрирования (этилена и нефти). Ценность ренийсодержащих катализаторов усугубляется их неотравляемостью в присутствии серы.

Многие сплавы Re (с Rt, Pd, Rh, Ir, Mo, Ta, W, Co и др.) отличаются жаропрочностью, кислотоустойчивостью, используются, в частности, для изготовления высокотемпературных термопар. [2]

Рений находит применение в виде сплава с вольфрамом для изготовления нитей в импульсных лампах-“вспышках”, но его сплавы очень неустойчивы по отношению к кислороду; очень ценная Pt-Re термопара требует работы в атмосфере инертного газа. [3]

Осаждением металлического рения получают зеркала с большой отражательной способностью. Из металлического рения и его сплавов изготавливают контакты мощных электрических переключателей. Благодаря пониженной летучести, хорошей электропроводности, превосходной термоэлектронной эмиссии металлический рений используют для изготовления различных электродов в электронных рентгеновских трубках и радиолампах. Из сплавов платиновых металлов с рением делают ювелирные изделия. [10]

2.2 Соединения рения.

С.О.+1+2+3+4+5+6+7
ОксидыRe2OReO

[Re2O3]

черный

ReO2

коричневый

[Re2O5]

голубой

ReO3

красный

Re2O7

желтый

Re2O8

белый

Гидро-ксид??

Re2O3*nH2O

осн.

Re(OH)4

амф.

-

[H2ReO4]

кисл.

[HReO4]

кисл.

Оксога-

Логениды

ReOF3

черный

ReOF4,

ReOBr4

голубые

ReOCl4

зел-корич

ReO3F

желтый

ReO3Cl

ReO3Br

ReOF5

ReO2F3

Соли?ReI2

ReCl3, Re3Cl9,

Re3Br9,

Re3I9

ReF4,

Na2ReO3

Рениты,

ReF4,

ReCl4,

ReBr4,

ReI4

Na4Re2O7

гипоре-ниты

ReF5,

ReCl5,

ReBr5

BaReO4

ренаты

KReO3

гипоренаты

ReF6,

ReCl6

KReO4

перре-наты

K3ReO5

мезо-перренаты

ReF7

Окисл.-восст.

Св-ва

?? Слабо выраженные окислительные свойства

2.2.1Оксиды рения.

2.2.1.1 Re2O8

Пероксид рения белый. Получается при сгорании Re в быстром токе кислорода при 150оС. Неустойчив и расплывается на воздухе. Поскольку высшая валентность Re равна 7, то Re2O8 cуществует в виде

O O

O=Re-O-O-Re=O

O O

Re2O8 + 2 H2O = 2 HReO4 + H2O2

Re2O8 + 8 H2S = Re2S7 + S + 8 H2O

2 Re2O8 = 2 Re2O7 + O2

Плотность 8.4 г/см3

Тпл 150-155 оС [7]

Давление паров Re2O8[1]

T, oC100120140160180200220
P, мм рт.ст.6.611.718.725.631.839.246.6

2.2.1.2 Re2O7

Желтые кристаллы. Высший и наиболее устойчивый окисид рения, получается при обработке металлического рения избытком кислорода при температуре выше 150оС. Другие методы получения заключаются в испарении перрениевой кислоты в вакууме и действии кислорода при повышенных температурах на низшие окислы и сульфиды рения. [11]

4 Re + 7 O2 = 2 Re2O7

ReOx + y O2 = Re2O7 [7]

Re2O7хорошо растворяется в воде с образованием перрениевой кислоты (очень гигроскопичен). Восстанавливается до низших окислов рения при действии CO и SO2 при повышенных температурах. Водород восстанавливает его до ReO2при 300oC и до металла при 800оС. Re2O7реагирует также с сухим H2S с образованием Re2S7.

Упругость паров Re2O7зависит от температуры следующим образом:

t, oC230250265280295300310325340360

p,

мм.рт.ст.

3.010.926.561.2135160210312449711

Re2O7имеет орторомбическую решетку с параметрами а=15.25А, b=5.48А, с=12.5А. Атом рения обладает координацией двух видов : почти правильной тетраэдрической ( межатомные расстояния Re-O 1.68-1.80 А ) и существенно искаженной октаэдрической ( межатомные расстояния Re-O 1.65-2.16 А ), причем структура построена из равных количеств октаэдров и тетраэдров. Структура хорошо объясняет механизм испарения Re2O7с образованием в газовой фазе молекул Re2O7с тетраэдрической координацией рения и общим строением молекулы O3ReOReO3, а также механизм гидролиза с образованием молекул Re2O7(H2O)2 , построенных из соединенных вершинами ReO4и октаэдра ReO4(H2O)2.

Растворяется в этиловом спирте, ацетоне. Не растворяется в четыреххлористом углероде и абсолютном эфире. Плотность 6.2 г/см3. Температура плавления 304оС. Температура кипения 355оС. Очень летуч.На этом свойстве основано выделение Re из промышленного сырья, а также ряд методов отделения рения от сопутствующих элементов дистилляцией. [11]

2.2.1.3 ReO3

Может быть получен при неполном сгорании в воздухе металлического рения или других его соединений, например сульфидов, а также может присутствовать в неустойчивых промежуточных продуктах рениевой кислоты и семиокиси рения. Впервые триоксид рения была получена при нагревании смеси окисида рения (VII) и мелко раздробленного рения без воздуха при 200-250oC.

3 Re2O7 + Re = 7 ReO3

Можно получать оксид рения (VI) также путем взаимодействия оксида рения (VII) и оксида рения (IV).

Re2O7 + ReO2 = 3 ReO3

Оксид представляет собой красное мелкокристаллиеское вещество с металлическим блеском. Окраска его во многом зависит от метода получения, известна, например, синяя разновидность триоксида рения. [1]

Оксид рения (VI) может быть получен по реакции :

Re2O7 + CO = CO2 + 2 ReO3

Промежуточно возникающая при этом синяя окраска обусловлена, вероятно, образованием нестойкого смешанного оксида типа Re2O7*ReO3 ( т.е. ReO2(ReO4)2 ). [13]

Триоксид рения образуется при действии на Re2O7диоксана. При нагревании до 145оС комплекс состава Re2O7*3C4H8O разлагается на ReO3и летучий продукт.

Плотность 6.9 г/см3.

При нагревании в вакууме до 400оС разлагается на оксиды рения (VII) и (IV)

3 ReO3 = Re2O7 + ReO2

На воздухе ReO3устойчив до 110оС , при повышенной температуре окисляется до Re2O7. Триоксид рения довольно устойчив в воде, в разбавленных растворах кислот и щелочей. Водород восстанавливает ReO3до металла. При сплавлении с Na2O получаются перренат и ренит :

2 Na2O + 3 ReO3 = 2 NaReO4 + Na2ReO3 [11]

При действии ReO3на горячий раствор NaOH происходит диспропорционирование на NaReO4и ReO2. [13]

Из раствора йодистого калия триоксид выделяет иод, хлористым оловом он восстанавливается до черного вещества неопределенного состава.

Давление паров триоксида рения [1]

T, oC325350375400420
P, мм рт.ст.0,00090,00500,02340,0980,288

2.2.1.4 Re2O5

Оксид рения (V) получен при действии на раствор Re (VII) в конц. H2SO4сульфата двухвалентного железа. При высоких концентрациях рения наблюдалось выпадение темно-синего осадка, отвечающего формуле Re2O5. Оксид рения (V) был получен также электрохимическим восстановлением перрената в кислом растворе. [11]

Ранее предполагалось, что при восстановлении оксида рения (VII) металлическим рением образуется оксид рения (V) пурпурно-красного цвета : [1]

4 Re + 5 Re2O7 = 7 Re2O5 [7]

Однако в результате последующих работ было установлено, что восстановление протекает до шестивалентной формы.

Соединения пятивалентного рения менее устойчивы в водных растворах, чем соединения рения других валентностей. По реакции разложения

3 Re5+ = Re7+ + 2 Re4+

окислительно-восстановительный потенциал Re7+/Re5+ несомненно ниже, чем потенциал Re5+/Re4+ . Этому разложению способствует также малая растворимость оксида рения (IV). [1]

2.2.1.5 ReO2

Оксид рения (IV) может быть получен несколькими способами.

1. Восстановлением высших оксидов в атмосфере водорода.

2. Упариванием рениевой кислоты с гидразином.

3. Гидролизом хлорренатов (например, калия) по реакции

K2ReCl6 + 2 H2O = ReO2 + 2 KCl + 4 HCl

4. Разложением в воде комплексных соединений пятивалентного рения.

5. Длительным нагреванием рения с оксидом рения (VII) при 600-650оС

3 Re + 2 Re2O7 = 7 ReO2

6. Нагреванием ReO3по уравнению

4 ReO3 = 2 ReO2 + Re2O7 + 0.5 O2

7. Восстановлением растворов рениевой кислоты и ее солей с солянокислой среде ртутью, цинком, йодидом калия или хлоридами олова, хрома и ванадия.

8. Электрохимическим восстановлением рениевой кислоты и перренатов в кислой среде. [1]

9. Разложением перрената аммонияпри 600оС в инертной среде

2 NH4ReO4 = N2 + 4 H2O + 2 ReO2 [12]

10. Гидролизом комплексных соединений пятивалентного рения :

3 H2ReOCl5 + 5 H2O = 2 ReO2 + HReO4 + 15 HCl [11]

При получении ReO2из растворов обычно образуется гидратированный оксид рения (IV)ReO2*2H2O – порошок темно-коричневого цвета, который темнеет в процессе обезвоживания. При нагревании до 650оС под вакуумом оксид рения (IV) полностью обезвоживается.

Безводный оксид рения (IV) – темно-бурое, почти черное твердое вещество, принимающее иногда синеватый оттенок, обладает способностью поглощать газы. Плотность – 11.4 г/см3. Он проявляет лишь слабые парамагнитные свойства, в то время как оксид марганца (IV) сильно парамагнитен.

Помимо оксида рения (IV), относящегося к типу МоО2 , был получен ромбический (a=4,810 A, b=5,643 A, c=4,601 A [11]) ReO2желтого цвета нагреванием перрената аммония при высоких температурах или длительной ( в течении нескольких недель ) выдержкой смеси рения и оксида рения (VII) в вакууме при 1050оС.

При сплавлении со щелочами на воздухе конечными продуктами являются перренаты :

4 ReO2 + 4 KOH + 3 O2 = 4 KReO2 + 2 H2O

При сплавлении в вакууме образуются ренаты и рениты :

ReO2 + 2 NaOH = Na2ReO3 + 2 H2O

В случае избытка щелочи при сплавлении получаются также и гипорениты, например Na3ReO4 , которые не устойчивы во влажном воздухе. [1]

При взаимодействии с азотной кислотой, перекисью водорода, с хлорной и бромной водой ReO2легко окисляется до рениевой кислоты. При растворении ReO2 в конц. HCl образуется гексахлороренат-ион [ReCl6]2-. [11]

Давление паров оксида рения (IV) [1]

T, оС650675700725750785
Р, мм рт.ст.0,000130,000330,000810,00190,00430,0123

2.2.1.6 Re2O3

Нейтрализуя холодный кислый раствор ReCl3щелочью в отсутствие кислорода воздуха и других окислителей, удается выделить черный осадок гидрокисда трехвалентного рения – Re2O3*xH2O. Осадок этот растворим в горячей концентрированной HCl ( или HBr ) , а на воздухе легко окисляется до HReO4. [13]

2.2.1.7 ReO

Оксид рения (II) был получен восстановлением рениевой кислоты кадмием в разбавленной соляной кислоте под вакуумом. Полученное твердое аморфное вещество отвечало формуле ReO*H2O, оно трудно поддается дегидратации. На воздухе этот оксид не взаимодействует с соляной кислотой и основаниями, медленно окисляется кислородом воздуха, но легко растворяется в азотной кислоте и бромной воде. [1]

2.2.1.8 Re2O

Монооксид рения получают восстановлением рениевой кислоты в разбавленной соляной кислоте ( 0.2 н ) в вакууме; в качестве восстановителя применялся цинк. Полученный черный осадок растворим в азотной кислоте и в бромной воде, но щелочной раствор хромата и окисное сернокислое железо действуют на него с трудом. Осадок содержит лишь следы цинка и хлора и его состав отвечает формуле Re2O*2H2O.[1] На воздухе этот окисел быстро окисляется. [11]

2.2.2 Соли рения.

Имеется указания на существование целого ряда солей :

Перренаты Me2O*Re2O7 или MeReO4 (в основном бесцветные или белые)

Мезоперренаты 3Me2O*Re2O7или Me3ReO5 (от желтых до красных)

Ортоперренаты 5Me2O*Re2O7 или Me5ReO6

Ренаты Me2O*ReO3или Me2ReO4 (зеленые)

Гипоренаты Me2O*Re2O5или MeReO3 (желтые)

Рениты Me2O*ReO2или Me2ReO3(коричневые) [1]

2.2.2.1 Рениты

Рениты образуются в отсутствие воздуха при сплавлении ReO2с гидроксидами или оксидами щелочных металлов :

ReO2 + 2 NaOH = Na2ReO3 + H2O

Рениты представляют собой диамагнитные черно-коричневые мелкие кристаллы, плохо растворимые в воде. Рениты превращаются в ReO2*nH2O под действием разбавленных кислот в присутствии воздуха и окисляются до гипоренатов MeIReO3, метаперренатов MeIReO4 или мезоперренатов Me3IReO5 под действием воздуха, перекиси водорода или азотной кислоты.

2.2.2.2 Гипоренаты

Гипоренаты мало устойчивы, их получают сплавлением смеси стехиометрически необходимых количеств ReO2и MeIReO4 с избытком щелочи без доступа воздуха. [10] Длительным нагреванием при 700оС смеси NaOH, ReO2и NaReO4был получен гипоренат натрия вероятного состава NaReO3. Эта бледно-желтая соль легко разлагается водой на производные четырех- и семивалентного рения. Был получен также Cd2Re2O7. [13]

2.2.2.3 Ренаты

Ренатылегко подвергаются диспропорционированию, подобно манганатам

3 Me2IReO4 + 4 H2O = 4 MeOH + ReIV(OH)4 + 2 MeIReVIIO4 [2]

Они окрашены в зеленый цвет, в большей степени являются окислителями, чем восстановителями, были получены в растворах. При сплавлении при 500о метаперренатов щелочных металлов с ReO2и NaOH или KOH образуются гипоренаты MeIReO3, которые при охлаждении окисляются в неустойчивые ренаты Me2IReO4 зеленого цвета. [10] Образование зеленых ренатов при сплавлении Re или ReO2со щелочами в присутствии окислителей обычно имеет место лишь в качестве промежуточной стадии окисления, тогда как конечным устойчивым продуктом является сплав, содержащий соответствующую соль мезорениевой кислоты. [13]

2.2.3Рениевая кислота.

Получение :

Re2O7 + H2O = 2 HReO4

3 Re + 7 HNO3 = 3 HReO4 + 7 NO + 3 H2O

2 ReO2 + 4 H2O + 3 Cl2 = 2 HReO4 + 6 HCl

ReS2 + HNO3 = HReO4

Концентрированый раствор рениевой кислоты содержит 60 % HReO4.

Mg + 2 HReO4 = Mg(ReO4)2 + H2

Al(OH)3 + 3 HReO4 = Al(ReO4)3 + 3 H2O

CuCO3 + 2 HReO4 = Cu(ReO4)2 + CO2 + H2O [7]

Водный раствор HReO4 – сильная кислота. Она бесцветна, может быть экстрагирована амиловым спиртом, не выделяется в свободном состоянии, растворима в органических основаниях, растворяет металлы, обладающие восстановительными свойствами, и образует соли, именуемые метаперренатами. [10]

В нейтральных водных и разбавленных кислых и щелочных растворах Re(VII) находится в виде рениевой кислоты или ее солей перренатов.

Высказано мнение о существовании двух форм кислоты – тетраэдрической ReO3OH (pK=1.67) и октаэдрической ReO(OH)5 (pK=2.1).

Установлено, что при обезвоживании рениевой кислоты сначала происходит реакции конденсации и поликонденсации :

O

||

ReO3OH + ReO(OH)5 = H2O + O=Re-O-ReO(OH)4

||

O

А затем процесс сопровождается частичным восстановлением рения (VII) до оксидов различной валентности. [5]

Кислород HReO4может быть частично или полностью замещен серой с образованием различных тиокислот, вплоть до HReS4. Соли этих кислот в растворе неустойчивы и постепенно разлагаются с выделением Re2S7. Еще менее устойчивы сами тиокислоты. [13]

2.2.4 Перренаты.

Соли рениевой кислоты. ReO-4 – бесцветный ион ( MnO-4 – красно-фиолетовый, TcO-4 – розовый ). Ионы ReO-4распознаются в растворе по качественным реакциям, для которых являются катализаторами, например

TeO42- + 3 Sn2+ + 18 Cl- + 8H+ = Te + 3 SnCl62- + 4 H2O

(черн. осадок)

Среда: соляная или серная кислоты ( азотная, фосфорная или хлорная подавляют или прекращают реакцию ), винная или лимонная кислоты ускоряют реакцию и повышают ее чувствительность.

SeO42- + 3 Sn2+ + 8 H3O+ = Se + 3 Sn4+ + 12 H2O

(красн. осадок)

Максимальная скорость данной реакции наблюдается в 1М р-ре соляной кислоты или 2-4М р-ре серной. Лимонная и винная кислоты ускоряют реакцию.[5]

Метаперренаты ( соли метарениевой кислоты ) образуются при сплавление порошка металлического рения с щелочами в токе кислорода, действием HReO4на окислы, гидроокиси или карбонаты многих металлов или на различные органические основания. Получение труднорастворимых метаперренатов основано на обработке растворов, содержащих анион ReO4- , растворами солей многих катионов.

Анион ReO4-обладает меньшей окислительной способностью, чем анион MnO4-, более устойчив и труднее восстанавливается.

Как правило, метаперренаты имеют более низкую растворимость и большую термическую устойчивость, чем соответствующие перхлораты и перманганаты. Если проследить за поведение при нагревании KReO4, KMnO4, KClO4и KIO4 , можно установить, что KReO4 плавится при 518оС и кипит при 1370оС, в то время как KMnO4разлагается при 200оС, KClO4– при 400оС и KIO4– при 600оС. Примерами соединений рения с низкой растворимостью являются метаперренаты калия, рубидия, цезия, таллия, серебра, нитрона и стрихнина. [10]

Помимо нормальных перренатов известны желтые или оранжевые соли некоторых щелочных или щелочноземельных металлов, производящиеся от более богатых водой форм рениевой кислоты – H3ReO5(мезоперренаты) и H5ReO6 (ортоперренаты). Получают их обычносухим путем ( совместным нагреванием перренатов с окислами или карбонатами), но лимонно-желтый Ba3(ReO5)2может быть получен также упариванием раствора Ba(ReO4)2с большим избытком Ba(OH)2 ( в отсутствие CO2 ).Водой все орто- и мезоперренаты легко разлагаются с образованием нормальных перренатов. [13]

2.2.4.1 Перренат калия.

Перренат калия получается при нейтрализации нагретого раствора рениевой кислоты поташом или едким кали, а также при добавлении в раствор хлористого калия. Эта соль осаждается в виде безводных тетрагонально-бипирамидальных кристаллов.

HReO4 + KOH = KReO4 + H2O

HReO4 + KCl = KReO4 + HCl [7]

Теплота образования соли – 263 ккал. Соль кипит без разложения при 1370оС. Зависимость давления диссоциации расплавленного перрената калия от температуры выражается уравнением :

lg p = -14188/T + 13.28

Растворимость перрената калия в воде сравнительно низка и сильно зависит от температуры, что позволяет очищать соль перекристаллизацией. Присутствие избытка ионов калия понижает растворимость перрената калия, благодаря чему его можно очищать от калиевых солей других металлов (молибдатов, хромитов и др.). В кислых растворах перренат калия растворим лучше, чем в воде, в том числе и в самой рениевой кислоте. [1]

При обработке метаперренатов в кислой среде смесью KCNS с SnCl2образуется оранжево-желтое соединение ReO(SCN)4, которое может быть экстрагировано эфиром, бутилацетатом или циклогексаноном.

2 KReO4 + 8 KCNS + SnCl2 + 12 HCl = 2 ReO(SCN)4 + SnCl4 + 10 KCl + 6 H2O

При длительном пропускании H2S через нейтральный концентрированный холодный раствор метаперрената калия образуется зеленовато-желтый раствор, который содержит тиоперренат калия:

KReO4 + H2S = KReO3S + H2O [10]

Смесь двух оксидов ReO2и KO2 ( или RbO2, CsO2 ) в молярной пропорции 1 к 3 выдерживается при 400оС 3 часа. Мезоперренат количественно образуется по реакции :

ReO2 + 3 KO2 = K3ReO5 + 3/2 O2

В воде мезоперренат гидролизуется

K3ReO5 + H2O = 3 K+ + ReO4- + 2 OH-

Если взять оксиды в другой пропорции, образуется смесь перренатов

KO2 + ReO2 = KReO4

2 KO2 + ReO2 = ½ ( K3ReO5 + KReO4 ) + ¾ O2 [9]

В процессе реакция протекает по схеме :

2 KO2 = 3/2 K2O2 + 3/2 O2

ReO2 + 3/2 O2 = ½ Re2O7 + ¾ O2

½ Re2O7 + 3/2 K2O2 = Me3ReO5 + ¾ O2

3 KO2 + ReO2 = K3ReO5 + 3/2 O2 [8]

3. Экспериментальная часть.

В ходе данной работы из металлического рения были поэтапно синтезированы : рениевая кислота, перренат аммония, затем его разложением – двуокись рения, а затем спеканием с супероксидом калия был получен перренат калия.

3.1. Использованные реактивы

Для работы использовались следующие реактивы : пруток рения ОСЧ, супероксид калия фирмы “Aldrich”.

3.2. Методы исследования

Идентификация проводилась методом рентгено-фазового анализа ( установка ДРОН – I ).

3.3. Получение оксида рения(IV)

Необходимо было синтезировать оксид рения (IV),так как потом в него можно было ввести метку 57Fe. ReO2синтезировали путём разложения перрената аммония, осажденного из раствора рениевой кислоты.

а. Получение HreO4.

Методика. 3 г. рения помещают в колбу Эйленмейера ( ёмкость 50 мл.) и приливают по каплям при охлаждении 10 мл. 30 % раствора Н2О2.

2 Re + 7 H2O2 = 2 HReO4 + 6 H2O[12]

Закрепив прут рения в штативе его конец опустили в концентрированную перикись водорода и оставили на продолжительный период времени. После растворения металла образовалась тяжелая жидкость желтоватого оттенка – рениевая кислота.

b. Получение NH4ReO4.

Методика. К водной HReO4прибавляют несвязанное основание до изменения окраски индикатора (метилрота); уже при этом может выпадать кристаллический осадок. После упаривания раствора выпавшие кристаллы отсасывают, промывают небольшим количеством ледяной воды и сушат при 110оС. Соли можно перекристаллизовывать из воды.

NH3 + HReO4 = NH4ReO4 [12]

По этой методике был проведен синтез перрената аммония. К 7 мл. концентрированной рениевой кислоты прилили 11 мл. раствора аммиака. В качестве индикатора использовался метилрот ( pH 6.2 - 6.4 ). Белый осадок перрената аммония отфильтровали, промыли, сушили в сушильном шкафу при 100оС. Выход составил 3.7684 г.

c. Получение ReO2.

Методика. Моноклинную модификацию ReO2получают нагреванием NH4ReO4при 400оС в токе сухого азота или аргона или в вакууме в течение 12 часов. При более высокой температуре образуется ромбическая модификация.

NH4ReO4 = ReO2 + ½ N2 + 2 H2O [12]

По этой методике был проведен синтез диоксида рения. Навеску перрената аммония разлагали в токе аргона при 400оС в течение 8 часов. С полученного черно-бурого порошка была снята рентгенограмма, подтвердившая наличие двух модификаций диоксида рения. Выход составил 1.3146 г.

Идентификация ReO2

2qоdэкспер., Аданные литературыI/I0Данные литера-туры
30.853.3653.40100100
43.652.4082.40100100
63.71.6961.695810
80.41.3781.385630
96.51.2001.1981360

Оксид рения (IV) был помечен раствором нитрата железа (Ш).Концентрация раствора – 0.266 моль/литр. Было введено 3 мольных процента из расчета на Fe2O3.

3.4. Получение K3ReO5

Методика. Смесь двух оксидов ReO2и KO2в молярной пропорции 1 и 3 нагревают 3 часа в токе кислорода при температуре 400оС. Мезоперренат количественно образуется по реакции

ReO2 + 3 KO2 = K3ReO5 + 3/2 O2 [9]

Нагревание производят постепенно, чтобы образующийся в ходе реакции Re2O7, обладающий повышенной летучестью, не возогнался. Нагревание проводят не более чем на 100оС в час. [8]

Синтез был проведен по данной методике. 0.2176 г. полученного ранее диоксида рения и 0.2122 г. пероксида калия перемешали в сухой камере и спекали в серебряной лодочке повышая температуру на 100 градусов в час до тех пор, пока температура не стала равной 400оС, а потом нагревание продолжали еще в течение 3х часов. С полученного желто-зеленого порошка была снята рентгенограмма, подтвердившая наличие перрената калия. По исчезновению пиков диоксида рения можно было судить о том, что он прореагировал весь. Оставшиеся пики можно приписать продуктам разложения пероксида калия.

Идентификация K3ReO5

2q°dэкспер., Аданные литературы.I/I0

данные

литературы

21.204.884.89100100
34.253.043.055893
35.82.9122.9183355
51.52.062.0656037
60.01.791.7912526

4. Выводы.

1. Проанализирована литература по твердофазным синтезам перренатов щелочных металлов и сделано заключение о том, что в условиях синтезов возможно провести введение добавки 57Fe.

2. Отработана методика получения мезоперрената калия твердофазным синтезом при условиях , позволяющих ввести добавку 57Fe.

3. Синтезирован K3ReO5.


5. Список литературы.

1. К.Б.Лебедев, «Рений», , М.: Государственное научно-техническое издательство литературы по черной и цветной металлургии, 1963.

2. В.И.Спицын, Л.И.Мартыненко, «Неорганическая химия», М.: Изд. МГУ, 1991.

3. Ф.Коттон, Дж.Уилкинсон, «Современная неорганическая химия» М.: Мир, 1969.

4. М.А.Филянд, Е.И.Семенова, «Свойства редких элементов», М.: Государственное научно-техническое издательство литературы по черной и цветной металлургии, 1953.

5. Л.В.Борисова, Е.Ф.Сперанская, «Кинетические методы определения рения», М: Наука, 1994.

6. О.А.Сонгина, «Редкие металлы», М.: Государственное научно-техническое издательство литературы по черной и цветной металлургии, 1951.

7. И.Друце, «Рений», М.: ИЛ, 1951.

8. Gerard Duquenoy, “Nouvelles methodes de syntheses dans l’etat solide de sels alcalins d’elements a valences superieures”, Revue de Chimie minerale, t.8, 1971, pg.683.

9. Andre Chretien, Gerard Duquenoy, “Syntheses entre solides a partir d’un superoxyde alcalin; mesoperrenates de potassium, rubidium, ou cesium.”, Chimie Minerale, t.268, 1969.

10. Р.Рипан, И.Четяну, «Неорганическая химия», М.: Мир, 1972.

11. Л.В.Борисова, А.Н.Ермаков, «Аналитическая химия рения», М.:Наука, 1974.

12. «Руководство по неорганическому синтезу», редактор Г.Брауэр, М.: Мир, 1985.

13. Б.В.Некрасов «Основы общей химии», М.: Химия, 1973.

14. Ю.Д. Перфильев «Матричная стабилизация неустойчивых состояний окисления элементов», Журнал российского химического общества им. Д.И.Менделеева, том XLII, 1998.

15. M.Tromel und H.Dollung “Die Kristallstruktur von K3IO5” Z.anorg. allg. Chem. 411, 41-48, 1975.

6. Приложение

6.1 Рений.

Атомный номер 75

Атомный вес 186.31

Изотопы 185 (37.1%), 187 (62.9%)

Тпл 3170оС

Ткип 5870оС

Радиус атома 1.373 А

Параметры кристаллической решетки а=2.755 А

с=4,4493 А

Плотность 21.01 г/cм3

Модуль упругости 47000 кГ/мм2 (20оС)

6.2 Свойства перрената калия.

Растворимость

18оС 9.52 г/л

21.5оС 10.7 г/л

28oC 17.6 г/л

Тпл 518оС

Ткип 1370оС

Плотность 4.38 г/см3

Структурный тип шеелита

а = 5.674 А

с = 12.688 А

Длина связи Rе – О 1.719 А

К – О 2.785 – 2.872 А

Угол О-Rе-О 109.2o-110o


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно