Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Статистические ряды распределения в изучении структуры рынка

Тип Реферат
Предмет Экономика
Просмотров
1028
Размер файла
348 б
Поделиться

Ознакомительный фрагмент работы:

Статистические ряды распределения в изучении структуры рынка

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Всероссийский заочный финансово-экономический институт

Кафедра Статистики

Курсовая работа

по дисциплине Статистика

на тему:

Статистические ряды распределения в изучении структуры рынка

Руководитель: Пуляшкин В.В.

Москва

2007

Введение

Статистические ряды распределения являются одним из наиболее важных элементов статистики. Они представляют собой составную часть метода статистических сводок и группировок, но, по сути, ни одно из статистических исследований невозможно произвести, не представив первоначально полученную в результате статистического наблюдения информацию в виде статистических рядов распределения. Первичные данные обрабатываются в целях получения обобщенных характеристик изучаемого явления по роду существенных признаков для дальнейшего осуществления анализа и прогнозирования; производится сводка и группировка; статистические данные оформляются с помощью рядов распределения в таблицы, в результате чего информация представляется в наглядном рационально изложенном виде, удобном для использования и дальнейшего исследования; строятся различного рода графики для наиболее наглядного восприятия и анализ информации. На основе статистических рядов распределения вычисляются основные величины статистических исследований: индексы, коэффициенты; абсолютные, относительные, средние величины и т.д., с помощью которых можно проводить прогнозирование, как конечный итог статистических исследований. Таким образом статистические ряды распределения являются базисным методом для любого статистического анализа. Понимание данного метода и навыки его использования необходимы для проведения статистических исследований.

В теоретической части курсовой работы рассмотрены следующие аспекты:

1) Понятие статистических рядов распределения, их виды;

2) Расчет средних величин, моды и медианы и представление рядов распределения графически;

Расчетная часть курсовой работы включает решение задачи по теме из варианта расчетного задания: Работа с таблицей «Выборочные данные торговых предприятий района: товарооборот и средние товарные запасы». Предметом исследования в работе будут служить так же торговые предприятия района (каждое предприятие, из которых, со своим товарооборотом). Работа содержит расчеты всех данных по ним, так же полное описание шагов действий для достижения конечного результата (вывода).

При написании курсовой работы использовались учебники курса, дополнительная литература, Интернет-ресурсы; при работе с табличными данными - персональный компьютер конфигурации:

Процессор – ADMSempron 28000+S754

Память – DDR 512MbPC3200 (DDR400)

Жесткий диск – 120Gb 7200/8 Mb/SATA

Принтер – hpdeskjet 3325, струйный

OC – Windows XP Professional

ППП – Microsoft Word 2002, Excel


1. Теоретическая часть

1) Понятие статистических рядов распределения и их виды

Результаты сводки и группировки материалов статистического наблюдения оформляются в виде статистических рядов распределения. Статистические ряды распределения представляют собой упорядоченное распределение единиц изучаемой совокупности на группы по группировочному (варьирующему) признаку. Они характеризуют состав изучаемого явления, позволяют судить об однородности совокупности, границах ее изменения, закономерностях развития наблюдаемого объекта. В зависимости от признака статистические ряды распределения делятся на следующие:

- атрибутивные (качественные);

- вариационные (количественные):

a) дискретные;

b) интервальные.

а) Атрибутивные ряды распределения

Атрибутивные ряды образуются по качественным признакам, которыми могут выступать занимаемая должность работников торговли, профессия, пол, образование и т.д. В правовой статистике - это виды преступлений (убийства, грабежи, разбои); занимаемая должность лиц, совершивших административные правонарушения; образование и т.д.

Пример атрибутивных рядов распределения:

Таблица 1.Распределение преступлений в г. Москве за сутки по видам

Виды преступлений Количество преступлений
абсолютное в % к итогу
Убийства33,2
Тяжкие телесные повреждения33,2
Изнасилования11,1
Разбои44,3
Грабежи1516,1
Кражи5256,0
Изъятия наркотиков1516,1
Итого 93100

В данном примере группировочным признаком выступают виды преступлений. Данный ряд распределения является атрибутивным, поскольку варьирующий признак представлен не количественными, а качественными показателями. Наибольшее число правонарушений составляют кражи 56%; далее правонарушения распределяются поровну между грабежами и случаями изъятия наркотиков (16%) и убийствами и случаями нанесения тяжких телесных повреждений (3%); разбои составили 4.5%, и наименьшее число зарегистрированных правонарушений составили изнасилования -1%.

б) Вариационные ряды распределения

Вариационные ряды строятся на основе количественного группировочного признака. При этом вариационные ряды по способу построения бывают дискретными (прерывными) и интервальными (непрерывными).

Дискретный ряд распределения - ряд, который основан на прерывной вариации признака, т.е. в котором значение признака выражено целым числом (число раскрытых преступлений и т.д.). Для построения дискретного ряда с небольшим числом вариантов выписываются все встречающиеся варианты значений признака , а затем подсчитывается частота повторения варианта . Ряд распределения принято оформлять в виде таблицы, состоящей из двух колонок (или строк), в одной из которых представлены варианты, а в другой - частоты.

Интервальный ряд распределения - ряд, базирующийся на непрерывно изменяющемся значении признака, имеющего любые количественные выражения, т.е. значение признаков таких рядах задается в виде интервала.

При наличии достаточно большого количества вариантов значений признака первичный ряд является труднообозримым, и непосредственное рассмотрение его не дает представления о распределении единиц по значению признака в совокупности. Поэтому первым шагом в упорядочении первичного ряда является его ранжирование – расположение всех вариантов в возрастающем (убывающем) порядке

Вариационные ряды состоят из двух элементов: вариант и частот.

Варианта - это отдельное значение варьируемого признака, которое он принимает в ряду распределения.

Частота - это численность отдельных вариант или каждой группы вариационного ряда. Частоты, выраженные в долях единицы или в процентах к итогу, называются частостями. Сумма частот составляет объем ряда распределения.

Для построения ряда распределения непрерывно изменяющихся признаков, либо дискретных, представленных в виде интервалов, необходимо установить оптимальное число интервалов, на которые следует разбить все единицы изучаемой совокупности.

2) Графическое изображение статистических данных

Статистический график– это чертеж, на котором статистические совокупности, характеризуемые определенными показателями, описываются с помощью условных геометрических образов или знаков. Представление данных таблиц в виде графика производит более сильное впечатление, чем цифры, позволяет лучше осмыслить результаты статистического наблюдения, правильно их истолковывать, значительно облегчает понимание статистического материала, делает его наглядным и доступным.

Значение графического метода в анализе и обобщении данных велико. Графическое изображение позволяет осуществить контроль достоверности статистических показателей, так как, представленные на графике, они более ярко показывают имеющиеся неточности, связанные либо с наличием ошибок наблюдения, либо с сущностью изучаемого явления. С помощью графического изображения возможны изучение закономерностей развития явления, установление существующих взаимосвязей. Простое сопоставление данных не всегда дает возможность уловить наличие причинных зависимостей, в то же время их графическое изображение способствует выявлению причинных связей, в особенности в случае установления первоначальных гипотез, подлежащих затем дальнейшей разработке. Графики также широко используются для изучения структуры явлений, их изменения во времени и размещения в пространстве. В них более выразительно проявляются сравнительные характеристики и отчетливо виды основные тенденции развития и взаимосвязи, присущие изучаемому явлению или процессу.

Таблица 2. Распределение студентов по возрасту

Возраст студентов Число студентов данного возраста
171
184
192
202
215
Итого14

График 1


Расчет показателей вариации.

Вариация – это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. Исследование вариации в статистике имеет большое значение, помогает познать сущность изучаемого явления. Показатели вариации характеризуют колеблемость отдельных значений вариант около средних величин. Показатели вариации определяют различия индивидуальных значений признака внутри изучаемой совокупности. Существует несколько видов показателей вариации:

а) Размах вариации R представляет собой разность между максимальным и минимальным значениями признака:

R = Xmax– Xmin

Размах вариации показывает лишь крайние отклонения признака и не отражает отклонений всех вариантов в ряду.

б) Среднее линейное отклонение

(7) - невзвешенное;

(8) - взвешенное,

где: Х - варианты;

`Х - средняя величина;

n - число признаков;

f - частоты.

Линейное отклонение учитывает различия всех единиц изучаемой совокупности.

в) Дисперсия - показатель вариации, выражающий средний квадрат отклонений вариант от средних величин в зависимости от образующего вариационного фактора.

(9) - невзвешенная;

(10) - взвешенная.

Показатель дисперсии более объективно отражает меру вариации на практике.

г) Среднее квадратическое отклонение

(11) - взвешенное;

(12) - невзвешенное.

Среднее квадратическое отклонение является показателем надежности средней: чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает собой всю статистическую совокупность.

д) Показатель вариации.

(13)

Показатель вариации отражает тенденцию развития явления, т.e. действие главных факторов. Показатель вариации выражается в % или коэффициентах.

Расчет моды и медианы.

Особым видом средних величин являются структурные средние. Они применяются для изучения внутреннего строения и структуры рядов распределения значений признака. К таким показателям относятся мода и медиана.

Мода - это величина признака (варианта), который наиболее часто встречается в данной совокупности, т.e. это варианта, имеющая наибольшую частоту.

В интервальном ряду распределения мода находится по следующей формуле:

(4) ,

где: минимальная граница модального интервала;

- величина модального интервала;

{частоты модального интервала, предшествующего и следующего за ним

Модальный интервал определяется по наибольшей частоте. Мода широко используется в статистической практике при изучении покупательского спроса, регистрации цен и т.д.

Медиана - варианта, находящаяся в середине ряда распределения.

Медиана делит ряд на две равные (по числу единиц) части – со значениями признака меньше медианы и со значениями признака больше медианы.

В случае если вариационный ряд имеет число значений вариант четное, то расчет медианы производится по следующей формуле:


(5) ,

где - варианты, находящиеся в середине ряда

В интервальном ряду распределения медиана рассчитывается следующим образом:

(6) ,

где: - нижняя граница медианного интервала;

- величина медианного интервала;

- полусумма частот ряда;

- сумма накопленных частот, предшествующих медианному интервалу;

- частота медианного интервала.

Структурные средние величины (мода и медиана) имеют довольно большое значение в статистике и широкое применение. Мода является именно тем числом, которое в действительности встречается наиболее часто. Медиана имеет важные свойства для анализа явлений: она обнаруживает типичные черты индивидуальных признаков явления, и, вместе с тем, учитывает влияние крайних значений совокупности. Медиана находит практическое применение в маркетинговой деятельности вследствие особого свойства – сумма абсолютных отклонений чисел ряда от медианы есть величина наименьшая:


2. Расчетная часть

По результатам 20%-ного выборочного обследования торговых предприятий района, проведенного на основе случайной бесповторной выборки, получены следующие данные за отчетный месяц (тыс. руб.)

Таблица 1. Исходные данные

№ ппТоварооборотСредние товарные запасы № ппТоварооборотСредние товарные запасы
161425616653254
239616817704251
368125218759293
454322119384158
554021020492188
670627821610237
757621422591239
853716923550191
974428824603236
1052321325528215
1137515026795301
1242920827611228
1355221828589230
1464222729627263
1561823830698246

Цель статистического исследования - анализ совокупности предприятий по признакам Товарооборот и Средние товарные запасы, включая:

· изучение структуры совокупности по признаку Товарооборота;

· выявление наличия корреляционной связи между признаками Товарооборота и Средними товарными запасами предприятий, установление направления связи и оценка её тесноты;

· применение выборочного метода для определения статистических характеристик генеральной совокупности фирм.

Задание 1

По исходным данным (табл. 1) необходимо выполнить следующее:

1. Построить статистический ряд распределения предприятий по товарообороту, образовав пять групп с равными интервалами.

2. Графическим методом и путем расчетов определить значения моды и медианы полученного ряда распределения.

3. Рассчитать характеристики ряда распределения: среднюю арифметическую, среднее квадратическое отклонение, коэффициент вариации.

4. Вычислить среднюю арифметическую по исходным данным (табл. 1), сравнить её с аналогичным показателем, рассчитанным для интервального ряда распределения. Объяснить причину их расхождения.

Сделать выводы по результатам выполнения Задания 1.

Выполнение Задания 1

Целью выполнения данного Задания является изучение состава и структуры выборочной совокупности предприятий путем построения и анализа статистического ряда распределения фирм по признаку Товарооборот.

1. Построение интервального ряда распределения предприятий по товарообороту

Для построения интервального ряда распределения определяем величину интервала h по формуле:

,

где –наибольшее и наименьшее значения признака в исследуемой совокупности, k - число групп интервального ряда.

При заданных k = 5, xmax= 795 тыс.руб. и xmin = 375тыс руб.

h = тыс.руб.

При h = 5 чел. границы интервалов ряда распределения имеют следующий вид (табл. 2):

Таблица 2

Номер группыНижняя граница, тыс.руб.Верхняя граница, тыс.руб
1375459
2459543
3543627
4627711
5711795

Определяем число предприятий, входящих в каждую группу, используя принцип полуоткрытого интервала [ ), согласно которому предприятия со значениями признаков, которые служат одновременно верхними и нижними границами смежных интервалов (459, 543, 627, и 711 тыс.руб), будем относить ко второму из смежных интервалов.

Для определения числа предприятий в каждой группе строим разработочную таблицу 3 (данные графы 4 потребуются при выполнении Задания 2).

Таблица 3. Разработочная таблица для построения интервального ряда распределения и аналитической группировки

Группы предприятий по товарообороту, тыс.руб.

Номер

предприятия

Товарооборот,

тыс.руб.

Средние товарные запасы,

Тыс. руб.

1234
375-45911375150
19384158
2396168
124292208
Всего41584684
459-54320492188
10523213
25528215
8537169
5540210
Всего52620995
543-6274543221
23550191
13552218
7576214
28589230
22591239
24603236
21610237
27611228
1614256
15618238
Всего1164572508
627-71129627263
14642227
16653254
3681252
30698246
17704251
6706278
Всего747111771
711-7959744288
18759293
26795301
Всего32298882
Итого30176706840

На основе групповых итоговых строк «Всего» табл. 3 формируем итоговую таблицу 4, представляющую интервальный ряд распределения предприятий по товарообороту.


Таблица 4. Распределение предприятий по товарообороту

Номер

группы

Группы предприятий по товарообороту, тыс.руб. x

Число предприятий,

fj

1375-4594
2459-5435
3543-62711
4627-7117
5711-7953
ИТОГО30

Приведем еще три характеристики полученного ряда распределения - частоты групп в относительном выражении, накопленные (кумулятивные) частоты Sj,получаемые путем последовательного суммирования частот всех предшествующих (j-1) интервалов, и накопленные частости, рассчитываемые по формуле

.

Таблица 5. Структура предприятий по товарообороту

Номер

группы

Группы предприятий по товарообороту, тыс.руб.x

Число предприятий,

f

Накопленная частота

Sj

Накопленная частость, %
в абсолютном выражениив % к итогу
123456
1375-459413,3413,3
2459-543516,7930,0
3543-6271136,72066,6
4627-711723,32790,0
5711-795310301000
ИТОГО30100

Вывод. Анализ интервального ряда распределения изучаемой совокупности предприятий показывает, что распределение предприятий по товарообороту не является равномерным: преобладают предприятия с товарооборотом от 543 тыс.руб. до 627 тыс.руб. (это 11 предприятий, доля которых составляет 36,7%); самые малочисленная группа предприятий имеет 711-795 тыс.руб.. Группа включает 3 предприятия, что составляет по 10% от общего числа фирм.

2. Нахождение моды и медианы полученного интервального ряда распределения графическим методом и путем расчетов

Для определения моды графическим методом строим по данным табл. 4 (графы 2 и 3) гистограмму распределения фирм по изучаемому признаку.

Рис. 1.Определение моды графическим методом

Расчет конкретного значения модыдля интервального ряда распределения производится по формуле:


где хМo– нижняя граница модального интервала,

h– величина модального интервала,

fMo – частота модального интервала,

fMo-1 – частота интервала, предшествующего модальному,

fMo+1– частота интервала, следующего за модальным.

Согласно табл. 4 модальным интервалом построенного ряда является интервал 35 - 40 чел., т.к. он имеет наибольшую частоту (f4=10). Расчет моды:

Вывод. Для рассматриваемой совокупности предприятий наиболее распространенный товарооборот характеризуется средней величиной 593,4 тыс. руб.

Для определения медианы графическим методом строим по данным табл. 5 кумуляту распределения предприятий по изучаемому признаку.

Рис. 2. Определение медианы графическим методом


Расчет конкретного значения медианы для интервального ряда распределения производится по формуле

,

где хМе– нижняя граница медианного интервала,

h – величина медианного интервала,

– сумма всех частот,

fМе – частота медианного интервала,

SMе-1 – кумулятивная (накопленная) частота интервала, предшествующего медианному.

Определяем медианный интервал. Медианным интервалом является интервал 543-627 тыс.руб., т.к. именно в этом интервале накопленная частота Sj=20 впервые превышает полусумму всех частот ().

Расчет медианы:

Вывод. В рассматриваемой совокупности предприятий половина из них имеют товарооборот не более 588,3 тыс.руб., а другая половина – не менее 588,3 тыс.руб.

3. Расчет характеристик ряда распределения

Для расчета характеристик ряда распределения , σ,σ2, Vσ на основе табл. 5 строим вспомогательную таблицу 6 (– середина интервала).


Таблица 6. Расчетная таблица для нахождения характеристик ряда распределения

Группы предприятий по товарообороту, тыс.руб.

Середина интервала,

Число предприятий,

fj

1234567
375-45941741668-16828224112896
459-54350152505-84705635280
543-627585116435000
627-7116697468384705649392
711-795753322591682822484672
ИТОГО3017550282240

Рассчитаем среднюю арифметическую взвешенную:

Рассчитаем среднее квадратическое отклонение:

Рассчитаем дисперсию:

σ2 = 972 = 9409

Рассчитаем коэффициент вариации:


Вывод. Анализ полученных значений показателей и σ говорит о том, что средняя величина товарооборота составляет 585 тыс.руб., отклонение от этой величины в ту или иную сторону составляет в среднем 97 тыс. руб. (или 16,5%), наиболее характерный товарооборот находится в пределах от 488 до 628 тыс. руб. (диапазон ).

Значение Vσ = 16,5% не превышает 33%, следовательно, вариация товарооборота в исследуемой совокупности предприятий незначительна и совокупность по данному признаку однородна. Расхождение между значениями , Мо и Ме незначительно (=585 тыс. руб., Мо=593,4 тыс. руб., Ме=588,3 чел.), что подтверждает вывод об однородности совокупности фирм. Таким образом, найденное среднее значение среднесписочной численности менеджеров (585тыс.руб.) является типичной, надежной характеристикой исследуемой совокупности предприятий.

4. Вычисление средней арифметической по исходным данным о среднесписочной численности менеджеров фирм

Для расчета применяется формула средней арифметической простой:

,

Причина расхождения средних величин, рассчитанных по исходным данным (17550 тыс. руб.) и по интервальному ряду распределения (17670 тыс. руб.), заключается в том, что в первом случае средняя определяется по фактическим значениям исследуемого признака для всех 30-ти фирм, а во втором случае в качестве значений признака берутся середины интервалов и, следовательно, значение средней будет менее точным. Вместе с тем, при округлении обеих рассматриваемых величин их значения совпадают, что говорит о достаточно равномерном распределении товарооборота внутри каждой группы интервального ряда.

Задание 2

По исходным данным (табл. 1) с использованием результатов выполнения Задания 1 необходимо выполнить следующее:

1. Установить наличие и характер корреляционной связи между признаками товарооборотисредние товарные запасы, образовав шесть групп с равными интервалами по каждому из признаков, используя методы:

а) аналитической группировки;

б) корреляционной таблицы.

2. Измерить тесноту корреляционной связи, используя коэффициент детерминации и эмпирическое корреляционное отношение.

Сделать выводы по результатам выполнения задания 2.

Выполнение задания 2

Целью выполнения данного задания является выявление наличия корреляционной связи между факторным и результативным признаками, а также установление направления связи и оценка ее тесноты.

По условию Задания 2 факторным является признак товарооборот, результативным – признак средние товарные запасы.

1. Установление наличия и характера корреляционной связи между признаками товарооборотом и средними товарными запасами методами аналитической группировки и корреляционных таблиц

1а. Применение метода аналитической группировки

Аналитическая группировка строится по факторному признаку Х и для каждой j-ой группы ряда определяется среднегрупповое значение результативного признака Y. Если с ростом значений фактора Х от группы к группе средние значения систематически возрастают (или убывают), между признаками X и Y имеет место корреляционная связь.

Используя разработочную таблицу 3, строим аналитическую группировку, характеризующую зависимость между факторным признаком Х- товарооборот и результативным признаком Yсредние товарные запасы. Макет аналитической таблицы имеет следующий вид (табл. 7):

Таблица 7. Зависимость объема продаж от среднесписочной численности менеджеров

Номер группы

Группы предприятий по

товарообороту, тыс. руб.

x

Число предприятий,

fj

Средние товарные запасы, тыс. руб.
всего

в среднем на одно предприятие,

12345=4:3
1
2
3
4
5
6
ИТОГО

Групповые средние значения получаем из таблицы 3, основываясь на итоговых строках «Всего». Построенную аналитическую группировку представляет табл. 8:

Таблица 8. Зависимость объема продаж от среднесписочной численности менеджеров

Номер группы

Группы предприятий по

товарообороту, тыс. руб.

x

Число предприятий,

fj

Средние товарные запасы, тыс. руб.
всего

в среднем на одно предприятие,

12345=4:3
1375-4594684171
2459-5435995199
3543-627111508228
4627-71171771253
12345
5711-7953882294
ИТОГО3068401145

Вывод. Анализ данных табл. 8 показывает, что с увеличением товарооборота от группы к группе систематически возрастает и средний товарный запас по каждой группе предприятий, что свидетельствует о наличии прямой корреляционной связи между исследуемыми признаками.

1б.Применение метода корреляционных таблиц

Корреляционная таблица строится как комбинация двух рядов распределения по факторному признаку Х и результативному признаку Y. На пересечении j-ой строки и k-ой графы таблицы указывается число единиц совокупности, входящих в j-ый интервал по признаку X и в k-ый интервал по признаку Y. Концентрация частот около диагонали построенной таблицы свидетельствует о наличии корреляционной связи между признаками - прямой или обратной. Связь прямая, если частоты располагаются по диагонали, идущей от левого верхнего угла к правому нижнему, обратная - по диагонали от правого верхнего угла к левому нижнему.

Для построения корреляционной таблицы необходимо знать величины и границы интервалов по двум признакам X и Y. Для факторного признака ХТоварооборот эти величиныизвестны из табл. 4 Определяем величину интервала для результативного признака Yсредние товарные запасы при k= 5, уmax= 301 тыс. руб., уmin= 150 тыс. руб.:

Границы интервалов ряда распределения результативного признака Y имеют вид:


Таблица 9

Номер группыНижняя граница, Тыс. руб.Верхняя граница, Тыс. руб.
1150180,2
2180,2210,4
3210,4240,6
4240,6270,8
5270,8301

Подсчитывая для каждой группы число входящих в нее фирм с использованием принципа полуоткрытого интервала [ ), получаем интервальный ряд распределения результативного признака (табл. 10).

Таблица 10. Интервальный ряд распределения фирм по объёму продаж

Группы предприятий по среднему товарному запасу, тыс. руб. уЧисло предприятий, fj
150-180,24
180,2-210,44
210,4-240,612
240,6-270,86
270,8-3014
ИТОГО30

Используя группировки по факторному и результативному признакам, строим корреляционную таблицу (табл. 11).

Таблица 11. Корреляционная таблица зависимости объема продаж от среднесписочной численности менеджеров

Группы предприятий по товарообороту, тыс. руб.

Группы предприятий по среднему товарному запасу, тыс. руб.

ИТОГО
150-180,2180,2-210,4210,4-240,6240,6-270,8270,8-301
375-459213
459-5431225
543-627119112
627-7111517
711-79533
ИТОГО44126430

Вывод. Анализ данных табл. 11 показывает, что распределение частот групп произошло вдоль диагонали, идущей из левого верхнего угла в правый нижний угол таблицы. Это свидетельствует о наличии прямой корреляционной связи между среднесписочной численностью менеджеров и объемом продаж фирмами.

2. Измерение тесноты корреляционной связи с использованием коэффициента детерминации и эмпирического корреляционного отношения

Коэффициент детерминации характеризует силу влияния факторного (группировочного) признака Х на результативный признак Y и рассчитывается как доля межгрупповой дисперсии признака Y в его общей дисперсии:

где – общая дисперсия признака Y,

– межгрупповая (факторная) дисперсия признака Y.

Общая дисперсияхарактеризует вариацию результативного признака, сложившуюся под влиянием всех действующих наY факторов (систематических и случайных) и вычисляется по формуле

,


где yi – индивидуальные значения результативного признака;

– общая средняя значений результативного признака;

n – число единиц совокупности.

Межгрупповая дисперсияизмеряет систематическую вариацию результативного признака, обусловленную влиянием признака-фактораХ (по которому произведена группировка) и вычисляется по формуле

,

где –групповые средние,

– общая средняя,

–число единиц в j-ой группе,

k – число групп.

Для расчета показателей и необходимо знать величину общей средней, которая вычисляется как средняя арифметическая простая по всем единицам совокупности:

Значения числителя и знаменателя формулы имеются в табл. 8. Используя эти данные, получаем общую среднюю :


= =228 тыс. руб.

Для расчета общей дисперсии применяется вспомогательная таблица 12.

Таблица 12. Вспомогательная таблица для расчета общей дисперсии

Номер

предприятия

Средние товарные запасы, тыс.руб.
1234
125628784
2168-603600
325224576
4221749
5210-18324
6278502500
7214-14196
8169-593481
9288603600
10213-15225
11150-786084
12208-20400
13218-10100
14227-11
1523810100
1625426676
1725123529
18293654225
19158-704900
20188-401600
21237981
2223911121
23191-371369
24236264
25215-13169
26301735329
2722800
2823024
29263351225
3024618324
Итого68401442636

Рассчитаем общую дисперсию:

=

Для расчета межгрупповой дисперсии строится вспомогательная таблица 13, При этом используются групповые средние значения из табл.

Таблица 13ю Вспомогательная таблица для расчета межгрупповой дисперсии

Группы предприятий

по товарообороту,

тыс. руб. x

Число предприятий,

fj

Среднее значение в группе,

тыс. руб.

12345
375-4594171-5712996
459-5435199-294205
543-6271122800
627-7117253254375
12345
711-79532946613068
ИТОГО3034644

Рассчитаем межгрупповую дисперсию:


Определяем коэффициент детерминации:

или 81%

Вывод. 81% вариации объёма продаж товаров фирмами обусловлено вариацией среднесписочной численности менеджеров по продажам, а 19% – влиянием прочих неучтенных факторов.

Эмпирическое корреляционное отношение оценивает тесноту связи между факторным и результативным признаками и вычисляется по формуле

Рассчитаем показатель :

= 90,1%

Вывод: согласно шкале Чэддока связь между товарооборотом и средними товарными запасами предприятий является весьма тесной.

Задание 3

По результатам выполнения Задания 1 с вероятностью 0,954 необходимо определить:

1) ошибку выборки для средней величины товарооборота торгового предприятия, а также границы, в которых будет находиться генеральная средняя.

2) ошибку выборки доли торговых предприятий с объемом товарооборота 627 и более тыс. руб., а также границы, в которых будет находиться генеральная доля фирм.

Выполнение Задания 3

Целью выполнения данного Задания является определение для генеральной совокупности предприятий района границ, в которых будут находиться средняя величина товарооборота, и доля предприятий с товарооборотом не менее 627 тыс. руб.

1. Определение ошибки выборки для величины товарооборота, а также границ, в которых будет находиться генеральная средняя

Применяя выборочный метод наблюдения, необходимо рассчитать ошибки выборки (ошибки репрезентативности), т.к. генеральные и выборочные харак- теристики, как правило, не совпадают, а отклоняются на некоторую величину ε.

Принято вычислять два вида ошибок выборки - среднюю и предельную.

Для расчета средней ошибки выборки применяются различные формулы в зависимости от вида и способа отбора единиц из генеральной совокупности в выборочную.

Для собственно-случайной и механической выборки с бесповторным способом отбора средняя ошибка для выборочной средней определяется по формуле


,

где –общая дисперсия изучаемого признака,

N – число единиц в генеральной совокупности,

n – число единиц в выборочной совокупности.

Предельная ошибка выборки определяет границы, в пределах которых будет находиться генеральная средняя:

,

,

где – выборочная средняя,

– генеральная средняя.

Предельная ошибка выборки кратна средней ошибке с коэффициентом кратностиt (называемым также коэффициентом доверия):

Коэффициент кратности t зависит от значения доверительной вероятностиР, гарантирующей вхождение генеральной средней в интервал , называемый доверительным интервалом.

Наиболее часто используемые доверительные вероятности Р и соответствующие им значения t задаются следующим образом (табл. 14):


Таблица 14

Доверительная вероятность P0,6830,8660,9540,9880,9970,999
Значение t1,01,52,02,53,03,5

По условию Задания 2 выборочная совокупность насчитывает 30 фирм, выборка 20% механическая, следовательно, генеральная совокупность включает 150 фирм. Выборочная средняя , дисперсия определены в Задании 1. Значения параметров, необходимых для решения задачи, представлены в табл. 15:

Таблица 15


Р

tnN
0,9542301505859409

Рассчитаем среднюю ошибку выборки:

Рассчитаем предельную ошибку выборки:

тыс. руб.

Определим доверительный интервал для генеральной средней:

тыс. руб.

Вывод. На основании проведенного выборочного обследования с вероятностью 0,954 можно утверждать, что для генеральной совокупности предприятий средняя величина товарооборота находится в пределах от 553 до 616 тыс. руб.

2. Определение ошибки выборки для доли фирм товарооборотом 627 тыс. руб. и более, а также границ, в которых будет находиться генеральная доля

Доля единиц выборочной совокупности, обладающих тем или иным заданным свойством, выражается формулой

,

где m – число единиц совокупности, обладающих заданным свойством;

n – общее число единиц в совокупности.

Для собственно-случайной и механической выборки с бесповторным способом отборапредельная ошибка выборки доли единиц, обладающих заданным свойством, рассчитывается по формуле

,

где w – доля единиц совокупности, обладающих заданным свойством;

(1-w) – доля единиц совокупности, не обладающих заданным свойством,

N – число единиц в генеральной совокупности,

n– число единиц в выборочной совокупности.

Предельная ошибка выборки определяет границы, в пределах которых будет находиться генеральная доля р единиц, обладающих исследуемым признаком:


По условию Задания 3 исследуемым свойством фирм является равенство или превышение товарооборота величины 627 тыс. руб.

Число предприятий с данным свойством определяется из табл. 3: m=7

Рассчитаем выборочную долю:

Рассчитаем предельную ошибку выборки для доли:

Определим доверительный интервал генеральной доли:

0,181 0,485

18,1% 48,5%

Вывод. С вероятностью 0,954 можно утверждать, что в генеральной совокупности предприятий района доля предприятий с товарооборотом 627 тыс. руб. и более будет находиться в пределах от 18% до 48,5%.

Задание 4

Имеются данные о продаже товара А на трех городских рынках:

Таблица 16

РынкиБазисный период Отчетный период
Средняя цена за 1 кг., руб. (р0)

Продано, т

(q0)

Изменение цены, %

(p1)

Индекс физического объема(q1)
1180350101,2
2200280Без изменений0,9
322070-51,1

Определите:

1. Индексы цен переменного, постоянного состава и структурных сдвигов.

2. Абсолютное изменение средней цены товара в результате влияния отдельных факторов.

Таблица 17

Рынки

Базисный период Отчетный период Расчетные графы
Средняя цена за 1 кг., руб. (р0)

Продано, т

(q0)

Изменение цены, %

(p1)

Индекс физического объема (q1)

p0q0

p1q1

p0q1

11803501981,26300070131,663756
22002802000,9560005650456500
3220702091,11540014776,315554
Итого -700-134400141407,9135810

Вычислим индекс цен переменного состава:

Ipпс=


Из таблицы видно, что цена продукции на каждом рынке в отчетном периоде по сравнению с базисным изменилась. В целом же средняя цена выросла на 4 % .Это объясняется влиянием изменений структуры реализации продукции по торговым городским рынкам. В базисном периоде по более низкой цене продавали продукцию меньше, чем в отчетном периоде по более высокой цене.

Рассчитываем индекс структурных сдвигов:

Ipccт=

Первая часть приведенной формулы позволяет ответить на вопрос, какой была бы средняя цена в отчетном периоде. Вторая часть формулы отражает фактическую среднюю цену базисного периода.

Рассчитанный индекс показал, что за счет структурных сдвигов цены значительно не изменились.

Определим индекс фиксированного или постоянного состава, который не учитывает изменения структуры продаж:

Ipфс =

Индекс цен фиксированного состава равен 104,1%, что позволяет сделать следующий вывод: если бы структура продаж продукции на городских рынках не изменилась, средняя цена возросла бы на 4,1%., что и произойдет в дальнейшем.

Между данными индексами существует следующая взаимосвязь:

Ipфс * Iccт = Ipпс ;

1,041 * 0,99 =1,040

Определим абсолютное изменение средней цены товара в результате влияния отдельных факторов:

D pq = åp1q1p0q0

D pq = 141407,9 – 134400 =7008 руб.


Заключение

Статистические ряды распределения являются базисным методом для любого статистического анализа.

Статистический ряд распределения представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку, характеризует структуру изучаемого явления. Анализируя рассчитанные показатели статистического ряда распределения, можно делать выводы об однородности или неоднородности совокупности, закономерности распределения и границах варьирования единиц совокупности. Изучив основные приемы исследования и практики применения рядов распределения, а также методику вычисления наиболее важных статистических величин, необходимо отметить, что конечная цель изучения статистики в целом - анализ изучаемого явления - крайне важен для всех сфер человеческой жизни. Анализ отображает явления в целом и вместе с этим учитывает влияние каждого фактора в отдельности. На основании проведенного анализа можно учитывать и прогнозировать факторы, негативно влияющие на развитие событий.

Социально-экономическая статистика обеспечивает предоставление важной цифровой информации об уровне и возможностях развития страны: ее экономическом положении, уровне жизни населения, его составе и численности, рентабельности предприятий, динамике безработице и т.д. Статистическая информация является одним из решающих ориентиров государственной экономической политики.

Статистические методы используют комплексно. Выделяют три основные стадии экономико-статистического исследования: сбор первичной статистической информации, статистическая сводка и обработка первичной информации, обобщение и интепретация статистической информации.

Качество, достоверность статистической информации определяют эффективность использования статистики на любом уровне и в любой сфере.


Литература

1. Статистика: Учеб. пособие/А.В. Багат, М.М. Конкина, В.М. Симчера и др.; Под ред. В.М. Симчеры.- М.: Финансы и статистика, 2005.

2. Громыко Г.Л. Теория статистики: Учебник. - М.: ИНФРА-М, 2006.

3. Практикум по статистике: Учеб. пособие для вузов/ Под ред. В.М. Симчеры. - М.: Финстатинформ, 1999.

4. Гусаров В.М. Статистика: Учеб. пособие для вузов. - М.: ЮНИТИ - ДАНА, 2001.

5. Гусаров В.М. Статистика: Учеб пособие/ В.М. Гусаров, Е.И. Кузнецова. – 2-е изд., перераб. и доп. – М.: ЮНИТИ-ДАНА, 2007.

6. Общая теория статистики: Статистическая методология в изучении коммерческой деятельности: Учебник / Под. ред. Башиной О.Э., Спирина А.А. – М.: Финансы и статисика, 2005.

7. Практикум по теории статистики: Учебное пособие/Под. ред. Шмойловой Р.А. – М.: Финансы и статистика, 2004.

8. Теория статистики: Учебник/Под. ред. Шмойловой Р.А. – М.: Финансы и статистика, 2001; 2003; 2006.

9. http://www.gks.ru


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно