Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Границя функції

Тип Реферат
Предмет Астрономия
Просмотров
1401
Размер файла
100 б
Поделиться

Ознакомительный фрагмент работы:

Границя функції

Коломийський коледж права і бізнесу

Р Е Ф Е Р А Т

на тему:

“ГРАНИЦЯ ФУНКЦІЇ”

Виконав

Кушмелюк Федір М.

Перевірив:

Чоботар О.В.

Коломия

2002


План

1. Границя числової послідовності.

2. Нескінченно малі числові послідовності.

3. Нескінченно великі числові послідовності.

4. Основні теореми про границі.

5. Границя функції неперервного аргументу.

1. Границя числової послідовності.

У кур­сі «Алгебра і початки аналізу» вивчають досить важливі властивості функцій, які не можна дослідити елементарни­ми способами. В основі методів, за допомогою яких уда­ється дослідити ці нові властивості, лежить поняття границі функції, одне із фундаментальних понять математики.

З'ясуємо поняття границі на простішому випадку функ­ціональної залежності, коли областю визначення функції у = f(х) є множина натурального ряду чисел N. Таку функцію називають числовою послідовністю і позначають yn = f(n), п = 1, 2, ... .

Числову послідовність ще записують у вигляді ряду чисел y1, 2, ..., ул,…, вякому y1називають першим чле­ном послідовності, y2 — другим іт. д., ynn-м, або за­гальним членом послідовності. Числову послідовність вва­жають заданою, якщо задано її загальний член.

Для числових послідовностей застосовують ще і таке позначення: п) або (ап), де уп, апn-ні члени послідов­ностей.

Прикладами числових послідовностей є арифметична і геометрична прогресії. Тут загальні члени задають такими формулами: уп= y1 + d(п - 1), уп= у1qn-1, п = 1, 2, ..., де dрізниця арифметичної прогресії; qзна­менник геометричної прогресії.

Розглянемо ще приклади числових послідовностей.

Приклад. Розглянемо послідовність, загальний член якої заданий формулою уп=, п = 1, 2, ... .

Дістанемо таку числову послідовність:

(2)

У послідовності (2) члени із зростанням числа п спа­дають і наближаються до числа нуль. І чим більше число n, тим відповідний член послідовності містиметься ближче до нуля. Іншими словами, відстань |уп0| при зростанні n стає як завгодно малою, тобто у послідовності (2) зна­йдеться член yNтакий, що для всіх п > N буде справ­джуватися нерівність

(3)

де — довільне додатне число. Надаючи є довільних додат­них значень, щоразу матимемо шукане число N.

Щоб знайти N для будь-якого наперед заданого додат­ного числа , підставимо в нерівність (3) значення уп і розв'яжемо здобуту нерівність відносно п. Дістанемо:

(4)

Звідси п > . Отже, нерівність (3) буде справджуватися для всіх значень п, які задовольняють нерівність (4).

Тому за число N можна взяти число , якщо воно ціле, абонайбільшу цілу частину цього числа, якщо це число в дробовим. Проілюструємо сказане за допомогою таб­лиці.

Таблиця

N23451031100

Дамо означення границі числової послідовності. Число а називається границею послідовності у1,y2, y3,…,уп,..., якщо для будь-якого додатного числа існує таке натуральне число N = N (), що для всіх п > N виконується нерівність

. (8)

Символічно це записують так:

Ми будемо користуватися першим позначенням (lim— від латинського слова «limes», що означає «границя»).

2. Нескінченно малі числові послідовності

Серед функцій натурального аргументу особливе місце відводиться так званим нескінченно малим послідовнос­тям.

Послідовність уп = f(п), п — 1, 2, ... називається нескінченно малою, якщо уп= 0.

Наприклад, послідовності , є нескінченно малими.

Якщо у нерівності (8) покласти а = 0, то дістанемо не­рівність | уп| < , п > N. Тому нескінченно малу число­ву послідовність можна означити ще й так.

Числова послідовність (уп) називається нескінченно ма­лою, якщо для будь-якого додатного числа існує натуральне число N таке, що для всіх п > N виконується нерівність | уп| < .

Нескінченно малі послідовності позначають через п), (βп), (n) і т. д.

Наступні теореми встановлюють тісний зв'язок між послідовністю (уп), яка має границю, і нескінченно малою послідовністю.

Теорема 1. Якщо уп= a, то послідовність (аn) = (yna) є нескінченно малою.

Доведення. Яке б не було число > 0, знайдеться таке N, що для всіх п > N виконуватиметься нерівність | уп — а | < , або , тобто — нескін­ченно мала послідовність.

Справедлива і обернена теорема.

Теорема 2. Якщо різниця між уп і числом а є нескінченно малою послідовністю, то а є границею послідовності (уп).

Доведення. Позначимо ап= уп — а. Тоді уп — а є нескінченно малою послідовністю. Тобто для будь-якогочисла > 0 знайдеться таке N, що для всіх п > N виконується нерівність | ап|< , або, що те саме, |уп — а|< . Отже, згідно з означенням границі, yn= а. Доведені теореми дають змогу навести ще й таке означенняграниці послідовності.

Число а називається границею числової послідовності (уп), якщо різниця між уп і числом а є нескінченно малою по­слідовністю, тобто (уп — а) = (п), де () — нескінчен­но мала послідовність.

Нескінченно малі послідовності мають такі властивості.

Властивівть 1. Алгебраїчна сума скінченного числанескінченно малих послідовностей є нескінченно малою послідовністю.

Перш ніж сформулювати наступну властивість, наве­демо таке означення.

Послідовність (уп) називається обмеженою, якщо існує число М > 0, що для всіх значень п = 1,2, ... виконуєть­ся нерівність

| уп|< М.

Властивість 2. Добуток нескінченно малої чис­лової послідовності на обмежену послідовність є нескінченно малою числовою послідовністю.

3. Нескінченно великі числові послідовності

Розглянемо нескінченно великі числові послідовності.

Означення. Послідовність (уп) називається нес­кінченно великою, якщо, яке б не було число М > 0, існує таке число N = N (М), що для всіх п > N виконується нерівність | уп| > М. Це записують так:

уппри цьому називають нескінченно великою послі­довністю. Наприклад, послідовності ((—1)пп), (п2), (п) є нескінченно великі.

Доведемо, наприклад, що ((—1)пп) є нескінченно ве­лика послідовність. Справді, для довільного числа М > 0, починаючи з деякого номера п, маємо |уп|=(1)пп = п > М. Члени заданої послідовності необмежене зро­стають за модулем, набуваючи то додатних, то від'ємних значень. Якщо М1 = 100, то |у|=п>100, якщо п = 101, 102, ... .

Отже, .

Слід зауважити, що необмежена числова послідовність може й не бути нескінченно великою. Так, числова послі­довність п), де

є необмеженою і не є нескінченно великою.

Існує тісний зв'язок між нескінченно малими та нескінченно великими числовими послідовностями. Цей зв'язок встановлюють такі теореми.

Теорема. Якщо п)є нескінченно велика числова послідовність, то послідовність () = є нескінченно малою.

Доведення. Оскільки (уп) є нескінченно велика послідовність, то яке б ми не взяли число М > 0, існує таке число N, що для всіх п > N виконується нерівність | уп |> M. Нехай М = , де — довільне додатне число.

Тоді | уп | > (n > N), або | аn | < (n > N). Теоре­му доведено.

Обернена теорема. Якщо послідовність () є нескін­ченно мала числова послідовність і для всіх n= 1, 2, ..., то послідовність п)==є нескінченно велика.

Доведення. Оскільки за умовою теореми () — не­скінченно мала послідовність, то для будь-якого числа > 0, наприклад, для =,де М>0 — будь-яке дійсне число, існує натуральне число N = N(М) таке, що длявсіх значень п > N виконується нерівність || < .

Позначимо уп= . Тоді

Теорема доведена.

4. Основні теореми про границі

Знаходження границі числової послідовності на основі "тільки означення границі викликає часто певні труднощі, оскільки: треба наперед знати «підозріле» на границю число; не кожного разу за заданим можна знайти N.

Тому на практиці для знаходження границі числових послідовностей користуються такими теоремами.

Теорема 1. Нехай послідовності п) і п) мають від­повідно границі а і b. Тоді послідовність (xn+yn) має границю а + b.

Теорема 2. Нехай послідовності п) і (уп) мають від­повідно границі а, b. Тоді послідовність п • уп) має границю, яка дорівнює а • b, тобто

Теорема 3. Нехай послідовності п) і п) мають скінченні границі, які відповідно дорівнюють , причому . Тоді послідовність має скінченну границю, яка дорівнює

Теорема 4 (Вейєрштрасса). Зростаюча або спадна об­межена послідовність має границю.

Теорема 5. Якщо послідовність п) має границю а, то ця границя єдина.

Приклад 1. Знайти (За означенням п! = , читають «ен факто­ріал».)

Розв'язання. Використаємо теорему про гра­ницю суми. Для цього з'ясуємо, чи існують границі доданків.. Послідовності , є нескінченно малими , тобто Послідовність (sinn2) є обмеженою: | sinn2 | 1. Отже,

Границі доданків існують. Тому

5. Границя функції неперервного аргументу

Розглянемо функцію у = f(х), де аргумент змінюється неперервно (набуває всіх значень з певного проміжку , крім, можливо, однієї внутрішньої точки даного про­міжку).

Наведемо два приклади.

Приклад 1. Простежимо, як поводить себефункція f(х) = + 2, коли значення аргументу хяк завгодно близько наближається до числа 2. Символічно це позначають так: х-2. З малюнка 105 випливає, що коли х - 2 зліва або справа, то відповідні значення функції f(х) як завгодно близько наближаються до числа 4, тобто ці значення мало відрізнятимуться від числа 4.

У такому разі кажуть, що функція f(х) = + 2 має границею число 4, якщо х - 2, або в точці х0 = 2, Символічно це записують так: .

Число А називається границею функції у = f (х) у точці х0 , якщо для будь-якого числа > 0 існує таке числе > 0, що для всіх і таких, що , якщовиконується нерівність

Символічно це записують так:

Приклад. Довести, що

Розв'язання. Під знаком граниш є лінійна функція y=kx+b(k=2,b=1).Зпопереднього при­кладу випливає, що лінійна функція у = kx + bу будь-якій точці х-aмає границю А. Границя дорівнює значенню цієї функції у точці х = а, тобто А = ka + b. Отже, у даному прикладі А = 2 • 1 + 1 = 0. Задача розв'язана.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 368 оценок star star star star star
среднее 4.9 из 5
ФГБО ВО БрГУ
Анна, большая молодец, заказ выполнен досрочно и без замечаний, рекомендую
star star star star star
РГЭУ РИНХ
Очень хороший реферат, было все подробно описано. в общем то что надо! спасибо)
star star star star star
РТА СПБ
Огромное спасибо за качественно выполненную работу и оформленную в соответствии с требован...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Исследуйте на сходимость числовой знакоположительный ряд

Решение задач, Математика

Срок сдачи к 20 янв.

только что

4 задания

Контрольная, Статистика

Срок сдачи к 18 янв.

только что

Выполнить курсовой. Финансы организаций. Р-00271

Курсовая, Экономика

Срок сдачи к 22 янв.

только что

Английский

Решение задач, Английский

Срок сдачи к 15 янв.

1 минуту назад

В данный момент требуется узнать стоимость

Курсовая, Бухгалтерский учет

Срок сдачи к 1 апр.

1 минуту назад

Решить 2 задачи и ответить на вопросы.

Решение задач, Электротехника

Срок сдачи к 17 янв.

2 минуты назад

Выполнить курсовой. Финансы организаций. Р-00271

Курсовая, Финансы

Срок сдачи к 22 янв.

2 минуты назад

8 заданий под вариантами 7,17,27,37,47,57,67,77

Контрольная, Математика

Срок сдачи к 14 янв.

2 минуты назад

Тема в задании нужно сделать курсовую по организации пар Севастополь...

Курсовая, Бухгалтерская и налоговая отчетность

Срок сдачи к 15 янв.

2 минуты назад

Выполнить Индивидуальный проект, Обществознание

Контрольная, Обществознание

Срок сдачи к 18 янв.

4 минуты назад

Сделать 3 призентации

Презентация, SMM в спорте

Срок сдачи к 18 янв.

4 минуты назад

сравнительный анализ мер валютного контроля

Презентация, Таможенное дело

Срок сдачи к 15 янв.

4 минуты назад

Тесты,Экзамены

Другое, Все

Срок сдачи к 19 янв.

5 минут назад

Решить контрольную

Контрольная, Биология

Срок сдачи к 30 янв.

5 минут назад

Технологическая (проектно-технологическая) практика

Отчет по практике, Педагогическое образование

Срок сдачи к 16 февр.

6 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно