Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Вычисление стаистических показателей

Тип Реферат
Предмет Экономика
Просмотров
448
Размер файла
83 б
Поделиться

Ознакомительный фрагмент работы:

Вычисление стаистических показателей

МИНИСТЕРСТВО ОБРАЗОВАНИЯ УКРАИНЫ

КАФЕДРА: Бухгалтерского учета

КОНТРОЛЬНАЯ РАБОТА

ПО КУРСУ «СТАТИСТИКА»

2007

ЗАДАЧА 1.

Имеются следующие данные о рабочих одного из участников механического цеха:

Таблица 1.

РабочийВозраст, лет

Месячная

З/П, грн.

РабочийВозраст, лет

Месячная

З/П, грн.

125180,001118100,00
224210,001237280,00
346390,001325190,00
445320,001430220,00
542260,001526210,00
650310,001636300,00
729240,001740330,00
836290,001828240,00
954390,001935280,00
1029250,002025280,00

Для выявления зависимости между возрастом рабочих и оплатой их труда произведите их группировку по возрасту, образовав пять групп с равными интервалами.

По каждой группе и совокупности рабочих в целом подсчитайте:

1. Число рабочих;

2. Средний возраст;

3. Среднюю заработную плату;

Результаты представьте в таблице. Проанализируйте показатели и сделайте краткие выводы.

Теоретическое обоснование

Выполнение задания начинают с группирования совокупности данных для этого определяют количество групп с равными интервалами и рассчитывают величины интервала.

Величина интервала:

d = (xmaxxmin) / n,

Где

Хmax, Xmin – соответственно максимум и минимум значения сгруппированного признака;

n– число групп.

Границы вариант (групп) определяются путем прибавления минимального значения и величин интервала к минимальному признаку, т.е.

[xmin + (xmin + d)],

Где

Xmin – нижняя граница инт6ервала (Xmin+d) – верхняя граница интервала.

Для следующей варианты (Xmin+d) становятся нижней границей интервала, а верхняя граница на d – больше нижней и т.д. Образовав группы с равными интервалами находят частоту (вес) каждой группы (вариант) т.е. подсчитывают число единиц совокупности входящих в каждую группу при этом необходимо задаться условием: если знание признака у единицы больше совокупности верхней границе интервала то это единица войдет в следующий интервал, т.е. чтобы Xi вошло в соответствующую группу ее значение должно быть в пределах

xmin < xi < (xmin + d)

Для расчета средней и показателей вариации определяют середину интервала (Xi), которая равна полу сумме его нижней и верхней границ.

Xi=[Xmin + (Xmin + d)]/2

Расчет средней и показателей вариации по данным задачи требует применения арифметической средней, так как данные представлены в виде вариант и частот. Вес каждой варианты различен, поэтому расчет производят по средней арифметической взвешенной.

xi = Σxifi / Σfi,

Где Xi– средняя арифметическая.

Xi – значение варианты определяемого признака (средина интервала).

fi – частота (вес) варианты.

Чтобы вычислить среднюю вначале следует взвесить варианты (перемножить варианты на их частоты (Xi*fi), затем найти сумму их произведений (SXi*fi), сумму частот (Sfi) и поделить сумму произведений вариант на частоты на сумму частот (1)).

РЕШЕНИЕ

1. Найдем минимальное и максимальное значение варианты данной совокупности:

Min = 18 лет;

Мах = 54 лет.

Определим размах вариации:

D = 54 – 18 = 36;

Тогда величина интервала составит:

d = (54 – 18) / 5 = 7 (лет).

2.Определим границы интервалов (групп) и их середины:


Таблица 2.

№ группыГраницы интервалаСередина интервала
118–2521,5
225–3228,5
332–3935,5
439–4642,5
546–5449,5

3. Определим принадлежность каждого рабочего к определенному интервалу (произведем группировку)

В группу 1 (границы: 18 – 25) входят рабочие:

№11 возраст составляет 18 лет с заработной платой 100,00 грн

№2 (возраст = 24 года) с (з/п = 210,00 грн)

№1 (возраст = 25 лет) с (з/п = 180,00 грн)

№13 (возраст = 25 лет) с (з/п = 190,00 грн)

№20 (возраст = 25 лет) с (з/п = 280,00 грн)

Количество человек в 1‑ой группе – 5

В группу 2 (границы: 25 – 32) входят рабочие:

№15 (возраст = 26 лет)с (з/п = 210,00 грн)

№18 (возраст = 28 лет) с (з/п = 240,00 грн)

№7 (возраст = 29 лет) с (з/п = 240,00 грн)

№10 (возраст = 29 лет) с (з/п = 250,00 грн)

№14 (возраст = 30 лет) с (з/п = 220,00 грн)

Количество человек во 2‑ой группе – 5

В группу 3 (границы: 32 – 39) входят рабочие:

№19 (возраст = 35 лет)с (з/п = 280,00 грн)

№8 (возраст = 36 лет) с (з/п = 290,00 грн)

№16 (возраст = 36 лет) с (з/п = 300,00 грн)

№12 (возраст = 37 лет) с (з/п = 280,00 грн)

Количество человек в 3‑й группе – 4

В группу 4 (границы: 39 – 46) входят рабочие:

№17 (возраст = 40 лет)с (з/п = 330,00 грн)

№5 (возраст = 42 года) с (з/п = 260,00 грн)

№4 (возраст = 45 лет) с (з/п = 320,00 грн)

№3 (возраст = 46 лет) с (з/п = 390,00 грн)

Количество человек в 4‑й группе – 4

В группу 5 (границы: 46 – 54) входят рабочие:

№6 (возраст = 50 лет) с (з/п = 310,00 грн)

№9 (возраст = 54 года) с (з/п = 390,00 грн)

Количество человек в 5‑й группе – 2

4. Определим средний возраст работы по каждой группе и по совокупности рабочих в целом.

Группа 1 х1 = (18+24+25+25+25) / 5 = 23,4 (года);

Группа 2 х2 = (26+28+29+29+30) / 5 = 28,4 (года);

Группа 3 х3 = (35+36+36+37) / 4 = 36 (лет);

Группа 4 х4 = (40+42+45+46) / 4 = 43,25 (года);

Группа 5 х5 = (50 + 54) / 2 = 52 (года);

По совокупности в целом:

Х = (21,5 · 5 + 28,5 · 5 + 35,5 · 4 + 42,5 · 4 + 49,5 · 2) / 20 = 33,05 (года)

5. Определим среднюю заработную плату по каждой группе и по совокупности рабочих в целом.

Группа 1 х1 = (100+210+180+190+280) / 5 = 192,00 (грн);

Группа 2 х2 = (210+240+240+240+250+220) / 5 = 280,00 (грн);

Группа 3 х3 = (280+300+290+280) / 4 = 287,50 (грн);

Группа 4 х4 = (330+260+320+390) / 4 = 325,00 (грн);

Группа 5 х5 = (310+390) / 2 = 350,00 (грн);

По совокупности в целом:

Х = (192,00 · 5 + 280,00 · 5 + 287,50 · 4 + 325,00 · 4 + 350,00 · 2) / 20 = 236,50 (грн)


Таблица 3. Группировка рабочих по возрасту работы

№ группыГраницы интерваловПоказатели по каждой группеПоказатели по совокупности в целом
Вес вариантыСредний возраст работыСредняя заработная платаСредний возраст работыСредняя заработная плата
118–25523,4192,00
225–32528,4280,00
332–39436287,5033,05236,50
439–46443,25325,00
546–54252350,00

Выводы: На основании полученных результатов по группировке рабочих по возрасту и проведенных расчетов можно сделать следующие выводы:

– наибольшее количество рабочих имеют возраст в пределах 18 – 25 лет (в среднем 23,4 года) и 25 – 32 лет (в среднем 28,4 года), наименьшее количество рабочих имеют возраст в интервале 46 – 54 года (в среднем 52 года). Средний же возраст работников предприятия составляет 33,05 года.

– наибольшую среднюю заработную плату имеют рабочие входящие в пятую группу возрастных пределов 46 – 54 года (в среднем 350,00 грн), наименьшую среднюю заработную плату имеют рабочие входящие в первую группу возрастных пределов 18 – 25 лет (в среднем 192,00 грн). Средняя заработная плата работников предприятия составляет 236,50 грн.

ЗАДАЧА 2.

Имеются следующие данные о размерах затрат на гривну товарной продукции на предприятиях города.


Таблица 4.

Затраты на гривну товарной продукцииЧисло предприятийТоварная продукция, млн. грн.
До 85610
85–901220
90–9548
95–10034
Итого2542

Вычислить:

1. Средний размер затрат на гривну товарной продукции;

2. Средний объем товарной продукции на одно предприятие.

Сделать выводы.

Теоретическое обоснование

Средней гармонической взвешенной называется величина обратная средней арифметической из обратных значений признака.

Использование средней гармонической объясняется тем, что исходной базой вычисления является величина равная произведению значения признака на его частоту. Принципиальное значение при выборе вида средней величине имеет построение логической формулы того показателя среднюю величину которого необходимо подсчитать.

РЕШЕНИЕ

Определяем средний размер затрат на гривну товарной продукции по формуле средней гармонической. Логической формулой для определения среднего размера затрат является:

средний размер затрат на гривну товарной продукции =Общий объем товарной продукции по всем предприятиям
Середины интервалов сгруппированных затрат на гривну товарной продукции

х = [10 + 20 + 8 + 4] / [10 / 82,5 + 20 / 87,5 + 8 / 92,5 + 4 / 97,5] = 87,5

Определяем средний объем товарной продукции на одно предприятие

х = 10 ∙ 6 + 20 ∙ 12 + 8 ∙ 4 + 4 ∙ 3 / 25 = 13,76 млн. грн.

Выводы: средний размер затрат на гривну товарной продукции 87,5, а средний объем товарной продукции на одно предприятие 13,76 млн. грн.

ЗАДАЧА 3.

Имеются следующие данные о производстве продукции промышленного предприятия за 1994–1999 гг. (в сопоставимых ценах, млн. грн.):

1994 г. – 8,0

1995 г. – 8,4

1996 г. – 8,9

1997 г. – 9,5

1998 г. – 10,1

1999 г. – 10,8

Вычислить аналитические показатели ряда динамики продукции предприятия за 1994–1999 гг.: абсолютные приросты, темпы роста и темпы прироста, абсолютное значение 1% прироста, а так же средние обобщающие показатели ряда динамики.

Теоретическое обоснование

Динамический ряд представляет собой последовательность уровней, сопоставляя которые между собой можно получить характеристику скорости и интенсивности развития явления. Анализируя уровни динамического ряда рассчитывается система абсолютных и относительных показателей динамического ряда.

Абсолютный прирост определяется как разность между двумя уровнями динамического ряда и показывает на сколько данный уровень динамического ряда больше или меньше предшествующего уровня или уровня взятого за базу.

Базисный абсолютный прирост

Δyi= yiyб

Цепной абсолютный прирост

Δyi= yiyi-1

где Δyi- абсолютный прирост

yi- уровень сравниваемого периода

yб – уровень базисного периода

yi-1 – уровень предшествующего периода

Коэффициент роста определяется как отношение двух сравниваемых уровней и показывает во сколько раз данный уровень динамического ряда больше или меньше предшествующего уровня или уровня взятого за базу.


Базисный Коэффициент роста

Кi= yi / yб

Цепной коэффициент роста

Кi= yi / yi-1

Если коэффициент роста выразить в процентах, то получиться показатель темпа роста.

Тр = Кi ∙ 100%

Темп прироста показывает на сколько процентов уровень данного периода больше или меньше предшествующего уровня или уровня взятого за базу.

Базисный темп прироста

ΔТп = yiyб / yб ∙ 100%

Цепной темп прироста

ΔТп = yiyi-1 / yi-1 ∙ 100%

ΔТп = Тр – 100%

Абсолютное значение одного процента прироста рассчитывается как отношение абсолютного прироста к темпу прироста в процентах за тот же период времени.

Базисный

Аi= 0.01 ∙ yi-1

Цепной

Аi= 0.01 ∙ yб

Для обобщающей характеристики динамики исследуемого явления определяют средние показатели. Метод расчета среднего уровня ряда динамики зависит от вида временного ряда. Для интервального ряда динамики абсолютных показателей средний уровень за период определяется по формуле простой средней арифметической.

y = ∑ y / n

Средний абсолютный прирост рассчитывается двумя способами. Как средняя арифметическая простая цепных приростов.

Δy = ∑Δyi / n

Как отношение базисного прироста к числу периодов.

Δy = ynyб / n

Среднегодовой коэффициент роста вычисляется по формуле средней геометрической двумя способами.

К= n√ к1 ∙ к2 ∙ … ∙ кn К= nyn/ yб

где кn – цепные коэффициенты роста

n – число коэффициентов

yn,yб – начальный и конечный уровни ряда.

Средний темп роста представляет собой средний коэффициент роста выраженный в процентах.

Тр = К ∙ 100%

Среднегодовой темп прироста

ΔТп = Тр – 100%

Среднее абсолютное значение 1% прироста за несколько периодов.

А = ∑ А / n

РЕШЕНИЕ

Для упрощения решения представим его в виде таблицы, за базовый год принимаем 1994 год:

Таблица 5. Аналитические показатели ряда динамики

ГодаПроизводство продукции млн. грн.yiyi-1yiyбyi / yi-1100%yi / yб ∙ 100%Тр100%Тр100%0.01 yi-10.01 yб
19948,0базисный период
19958,40,40,4105105550,080,08
19968,90,50,9106111,25611,250,084
19979,50,61,5106,7118,756,718,750,089
199810,10,62,1106,3126,256,326,250,095
199910,80,72,8106,91356,9350,0101

Средние показатели ряда динамики

Среднего уровня ряда динамики

y = 8,0 + 8,4 + 8,9 + 9,5 + 10,1 + 10,8 / 6 = 13,5 млн. грн.

Средний абсолютный прирост

Δy = 0,4+0,5+0,6+0,6+0,7 / 5 = 0,56

Среднегодовой коэффициент роста

К= 5√ 1,05 ∙ 1,06 ∙ 1,067 ∙ 1,063 ∙ 1,069 = 5√1,349 = 1,06

Средний темп роста

Тр = К ∙ 100% = 106%

Среднегодовой темп прироста

ΔТп = Тр – 100% = 106 – 100 = 6%

Среднее абсолютное значение 1% прироста за несколько периодов.

А = 0,08+0,084+0,089+0,095+0,0101 / 5 = 0,07

Выводы: на основании полученных результатов по анализу динамического ряда о производстве продукции промышленного предприятия за 1994–1999 гг. и проведенных расчетов можно сделать следующие выводы:

– абсолютный прирост производства продукции за 1995 г. больше на 0,4 млн грн чем производство продукции за 1994 г.,

– прирост производства продукции за 1996 г. больше на 0,5 млн. грн. чем производство продукции за 1995 г. и больше на 0,9 млн. грн. чем производство продукции за 1994 г.,

– прирост производства продукции за 1997 г. больше на 0,6 млн. грн. чем производство продукции за 1996 г. и больше на 1,5 млн. грн. чем производство продукции за 1994 г.

– прирост производства продукции за 1998 г. больше на 0,6 млн. грн. чем производство продукции за 1997 г. и больше на 2,1 млн. грн. чем производство продукции за 1994 г.

– прирост производства продукции за 1999 г. больше на 0,6 млн. грн. чем производство продукции за 1998 г. и больше на 2,8 млн. грн. чем производство продукции за 1994 г.

– аналогичные выводы можно сделать по темпу прироста. Он показывает на сколько процентов уровень данного периода больше или меньше предшествующего уровня или уровня взятого за базу.


ЗАДАЧА 4.

Имеются следующие данные о продаже в городе молока на колхозных рынках и в государственной торговле:

Таблица 5.

Место продажиСредняя цена за 1 л, копПродано, тыс. л
Базисный периодОтчетный периодБазисный периодОтчетный период
в государственной торговле3028400800
на колхозных рынках6050200300

Вычислить:

1. Индекс цен переменного состава

2. Индекс цен постоянного состава

3. Индекс структурных сдвигов

Покажите зависимость исчисленных индексов. Поясните полученные результаты.

Теоретическое обоснование

Отношение двух взвешенных средних величин с изменяющимися (переменными весами) показывающие изменение индексируемой величины называется индексом переменного состава. Для этого необходимо посчитать среднюю цену по всем местам продажи в городе молока соответственно в базисном и отчетном периодах.


Что бы ликвидировать влияние изменений в структуре весов (количество выпускаемой продукции) на показатель изменения уровня цены, берут отношение средних взвешенных величин с одними и теми же весами, т.е. вычисляют индекс постоянного состава. Для этого среднюю цену продукции в базисном периоде корректируем на структуру фактического выпуска продукции. Тогда формула индекса постоянного состава будет выглядеть так:

Для того, что бы ликвидировать влияние на средний уровень цены изменение цены выпускаемой продукции в каждом определенном месте рассчитывают индекс структурных сдвигов. Он представляет собой отношение среднего уровня цены базисного периода рассчитанного на отчетную структуру производства определенного вида продукции и фактическую среднюю цену в базисном периоде.

Между приведенными выше индексами существует взаимосвязь: индекс переменного состава равен произведению индекса постоянного состава на индекс структурных сдвигов.

РЕШЕНИЕ

Определяем индекс цен переменного состава:

Определяем индекс цен постоянного состава:

Определяем индекс структурных сдвигов:

Взаимосвязь между индексами:

0,85 = 0,8905 ∙ 0,9545

Выводы:На основании полученных результатов по определенным индексам цен можно сделать следующие выводы:

– индекс переменного состава показывает, что средняя цена молока в городе проданного в государственной торговле и на колхозных рынках снизилась на 15%. Это снижение обусловлено изменением цены молока в каждом месте продажи и изменением удельного веса выпускаемого молока. Для того, что бы выявить влияние каждого из этих факторов на динамику средней цены вычислялись индексы постоянного состава и индекс структурных сдвигов.

– индекс постоянного состава показывает, что средняя цена проданного молока уменьшилась на 11% в отчетном периоде по сравнению с базисным за счет изменения цены.

– индекс структурных сдвигов показывает, что средняя цена проданного молока уменьшилась на 4% в отчетном периоде по сравнению с базисным за счет увеличения количества продаваемого молока.


ЗАДАЧА 5.

Имеются следующие данные о норме расхода сырья на единицу изделия:

Таблица 6.

Расход сырья, г

Изготовлено изделий, шт.

До 208
20–2215
22–2450
24–2620
Свыше 267
итого100

Определить:

1. Средний размер сырья на одно изделие;

2. Среднее линейное отклонение;

3. Дисперсию и среднее квадратическое отклонение;

4. Коэффициент вариации.

Сделайте выводы.

Теоретическое обоснование

Расчет дисперсии – производят по формуле:

σ2 = Σ (xi- x)2fi / Σ fi

Следовательно, прежде всего необходимо найти отклонения вариант от средней (xi- xi), затем возвести их в квадрат ([(xi- xi)2]) квадраты отклонения взвесить [(xi - xi)2 fi] и просуммировать взвешенные квадраты отклонений [Σ (xi- xi)2fi.]. Полученную сумму разделить на сумму частот (2).

Среднее квадратическое отклонение устанавливают извлечением корня квадратного из значения дисперсии


σ= √ σ2

Расчет средней, дисперсии и среднего квадратического отклонение производя по формулам указанным выше. Однако в качестве вариант в задачах приведены так называемые «открытые» варианты. В начале следует закрыть варианты, а затем, найдя полу сумму интервалов, ввести их в программу в виде усредняемых значений признака xi и fi – частоты повторения каждой варианты.

Среднее линейное отклонение L– есть средняя арифметическая из абсолютных значений отклонений вариант от средней и определяется по формуле:

L=(S(Xi-X)*fi)/Sfi

Согласно формуле в начале находят абсолютные отклонения каждой варианты от средней ((Xi-X), а затем каждое абсолютное отклонение взвешивают ((Xi-X)*fi), суммируют взвешенные абсолютные отклонения (S(Xi-X)*fi) и это суммы делят на сумму частот (Sfi).

РЕШЕНИЕ

Для упрощения решения представим его в виде таблицы и для нахождения средней и дисперсии воспользуемся способом моментов:

Таблица 7.

Расход сырья на 1‑цу изделия, г.Изготовлено изделий, шт.Середина интервала.|Х-Х|·f(X – A)

(X – A)

i

(Х – А)·f

i

(Х – А) 2

i2

(X – A) 2 ·f

i2

До 2081932-4-2-16432
20 – 22152130-2-1-15115
22 – 245023000000
24 – 262025402120120
Свыше 26727284214428
Итого100

å |Х-Х| · f=

130

å(X-A)

·f/ i =

3

å((X – A) / i) 2·f =

95

Для нахождения средней и дисперсии воспользуемся способом моментов:

Х=m1 · i +A; s2 = i 2 (n ·(m2 – m1 2);

m1= å((X – A) ·f / i))/åf; m2= å((X – A) / i) 2·f)/åf;

где

m1, m2 – соответственно моменты первого и второго порядка;

i – величина интервала;

А – варианта, имеющая наибольшую частоту;

F – значение весов или частот каждой варианты.

Наиболее часто встречаются изделия с расходом сырья на единицу продукции =23 г. Значит А=23 (г.).

Определим величину интервала (визуально видно, что интервалы имеют равную величину):

I=22–20=24–22=26–24=2 (г.)

На основании расчетов представленных в таблице найдем Х и s2:

m1 = 3/100 = 0,03; m2= 95/100 = 0,95;

Х= 0,03 · 2 + 23= 23,06 (г.)

s2 = 4 · (0,95 – 0,03 2) = 3,8

Найдем среднее квадратическое отклонение:

s = √3,8 = 1,95 (г.)

2. Определим среднее линейное отклонение:

L= 130 / 100 = 1,3 (г.)

3. Определим коэффициент вариации:

V= 1,3 / 23,06 = 0,056 (5,6%).

Выводы: на основании проведенных расчетов можно сделать следующие выводы:

– средний расход сырья на единицу изделия равен ≈ 23 г.

– среднее квадратическое отклонение показывает, что возможно отклонение от среднего расхода сырья на единицу продукции как в сторону увеличения, так и в сторону уменьшения на 1,95 г., что составляет 5,6% (см. коэффициент вариации).

– среднее линейное отклонение также показывает возможное отклонение от среднего расхода сырья на единицу продукции как в сторону увеличения, так и в сторону уменьшения, но менее точно, чем среднее квадратическое отклонение, и составляет 1,3 г.

ЗАДАЧА 6

Для определения срока службы металлорежущих станков проведено 10%-е выборочное обследование по методу случайного бесповторного отбора, в результате которого получены следующие данные:

Таблица 8.

Срок службы станков, летЧисло станков, шт.
До 411
4–624
6–835
8–1025
Свыше 105
Итого100

Определить: с вероятностью 0,997 предельную ошибку выборки и пределы, в которых ожидается средний срок службы металлорежущих станков.

Теоретическое обоснование

Предельная ошибка выборки это показатель, характеризующий диапазон в котором по обе стороны от выборочной средней или выборочной доли расположатся значения генеральной доли или генеральной средней гарантируемые с определенной вероятностью.

Δ = t ∙ μ

Δ – величина предельной ошибки выборки

μ – величина средней ошибки выборки

t – коэффициент доверия которому соответствуют вероятности предельной ошибки выборки.

Величина вероятности соответствующие коэффициентам доверия устанавливаются математической статистикой. Вероятности 0,683 соответствует коэффициент доверия равным 1, вероятности 0,954 t = 2, вероятности 0,997 t = 3.

Бесповторная выборка это когда каждая из единиц после регистрации ее признаков обратно не возвращается и в дальнейшем отборе не участвует. При бесповторной выборке сокращается численность единиц участвующих в выборочном наблюдении, поэтому при определении ошибки выборочной средней и выборочной доли признака при бесповторном отборе должна быть учтена численность генеральной совокупности и доля выборки. Если численность генеральной совокупности обозначается через N, то доля выборочной совокупности n будет равна отношению n к N. Поэтому формула средней ошибки выборки будет выглядеть:


РЕШЕНИЕ

Решение представим в виде таблицы.

Таблица 9.

Срок службы станков, летЧисло станков, шт.Середина интервала.х·f(х-х)2(х-х)2 ∙f
До 41133314,29157,19
4–62451203,1776,08
6–83572450,051,75
8–102592254,93123,25
Свыше 1051155

17,81

89,05
Итого10067840,25447,32

Определяем средний срок службы станков

Х = 678 ∙ 100 = 6,78

Определяем дисперсию

s2 = 447,32 / 100 = 4,47

Находим величину средней ошибки выборки

Величина предельной ошибки выборки будет равна

Δ = 3 ∙ 0,04 = 0,12

Выводы: с вероятностью 0,997 можно гарантировать, что средний срок службы металлорежущих станков в генеральной совокупности расположиться между 6,78–0,12 = 6,66 года и 6,78+0,12 = 6,9 года.

ЗАДАЧА 7

По данным задачи 1 для выявления тесноты связи между возрастом рабочих и оплатой труда вычислить коэффициент детерминации.

Теоретическое обоснование

Выполнение задания предусматривает расчет показателей, характеризующих случайную и систематическую вариации и их роли в общей вариации. Эти показатели широко используются на производстве при количественной оценке влияния различных факторов на те или иные показатели, осуществляемой с помощью дисперсионного анализа.

Исходя из этого правила, можно определить влияние случайной и систематической дисперсий на общую дисперсию, установить тесноту связи

между признаками.

Для выявления тесноты связи между группировочными и результативными признаками находят линейный коэффициент корреляции.

Коэффициент детерминации вычисляется по формуле

η2 = δ2вн/ σ2 об,

Где δ2вн- внутригрупповая дисперсия.

σ2 об - общая дисперсия.

Для оценки влияния группировочного признака (постоянного фактора) на величину вариаций рассчитывают межгрупповую дисперсию, исчисляемую на основании групповых средних

U² – межгрупповая дисперсия;

Xi– групповые средние исчисляются по формуле (1)

X – общее среднее (также исчисляется по формуле (1)

fi– групповые частоты.

При оценке влияния случайных факторов и их роли в общей вариации определяют внутригрупповую дисперсию. Она исчисляется как средняя арифметическая из групповых дисперсий

Эмпирическое корреляционное отношение рассчитывается по формуле

η= √ δ2вн/ σ2 об,

РЕШЕНИЕ

Определим линейный коэффициент корреляции для выявления тесноты связи между возрастом рабочих и оплатой труда. Таким образом, группировочным признаком в нашей задаче является возраст рабочих х, а результативным их заработная плата y.


Таблица 10.

№ рабочегоВозраст, лет (х)

Месячная

З/П, грн. (y)

xyx2y2
125180,00450062532400
224210,00504057644100
346390,00179402116152100
445320,00144002025102400
542260,0010920176467600
650310,0015500250096100
729240,00696084157600
836290,0010440129684100
954390,00210602916152100
1029250,00725084162500
1118100,00180032410000
1237280,0010360136978400
1325190,00475062536100
1430220,00660090048400
1526210,00546067644100
1636300,0010800129690000
1740330,00132001600108900
1828240,00672078457600
1935280,009800122578400
2025280,00700062578400
Всего6805270190500249241481300

;

Определим внутригрупповую дисперсию

δ2 = ((192 – 236,5)2 · 5 + (280 – 236,5)2 · 5 + (287,5 – 236,5)2 · 4 + (325 – 236,5)2 · 4 + (350 – 236,5)2 · 2) / 20 = 4343

Определим общую дисперсию

s2 = [1481300/20] – [236,5]2 = 18132,75

Определим коэффициент детерминации

η2 = 4343 / 18132,75 = 0,24

Определим эмпирическое корреляционное отношение

η = √ 0,24 = 0,48

Выводы: На основании полученных результатов по группировке рабочих по возрасту и проведенных расчетов можно сделать следующие выводы: значение коэффициента линейной корреляции, вычисленного по формуле Пирсона равно 1, то связь между возрастом рабочих и оплатой труда тесная. Знак «–» говорит о наличии обратной связи.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно