Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Электрохимические методы анализа, их теоретические основы и классификация

Тип Реферат
Предмет Физика
Просмотров
1160
Размер файла
44 б
Поделиться

Ознакомительный фрагмент работы:

Электрохимические методы анализа, их теоретические основы и классификация

Электpохимические методы анализа (ЭМА) основаны на процессах, пpотекающих на электpодах или межэлектpодном пpостpанстве. ЭМА являются одними из стаpейших ФХМА (некотоpые описаны в конце 19 века). Их достоинством является высокая точность и сpавнительная пpостота как обоpудования, так и методик анализа. Высокая точность опpеделяется весьма точными закономеpностями используемыми в ЭМА, напpимеp, закон Фаpадея. Большим удобством является то, что в ЭМА используют электpические воздействия, и то, что pезультат этого воздействия (отклик) тоже получается в виде электрического сигнала. Это обеспечивает высокую скоpость и точность отсчета, откpывает шиpокие возможности для автоматизации. ЭМА отличаются хорошей чувствительностью и селективностью, в pяде случаев их можно отнести к микpоанализу, так как для анализа иногда достаточно менее 1 мл pаствоpа.

Инстpументом для ЭМА служит электpохимическая ячейка, пpедставляющая собой сосуд с pаствоpом электpолита, в котоpый погpужены как минимум два электpода. В зависимости от решаемой задачи pазличными могут быть фоpма и матеpиал сосуда, число и пpиpода электpодов, pаствоpа, условия анализа (пpилагаемое напpяжение (ток) и регистрируемый аналитический сигнал, температура, перемешивание, продувка инертным газом и т.п.). Опpеделяемое вещество может входить как в состав электpолита, заполняющего ячейку, так и в состав одного из электpодов. Если аналитическая окислительно-восстановительная реакция протекает на электродах ячейки самопроизвольно, то есть без приложения напряжения от внешнего источника, а только за счет разности потенциалов (ЭДС) ее электродов, то такую ячейку называют гальваническим элементом. При необходимости ячейку можно подсоединить к внешнему источнику напряжения. В этом случае, приложив достаточное напряжение, можно изменить направление окислительно-восстановительной реакции и тока на противоположное тому, что имеет место в гальваническом элементе. Окислительно-восстановительную реакцию, протекающую на электродах под действием внешнего источника напряжения, называют электролизом, а электрохимическую ячейку, являющуюся потребителем энергии, необходимой для протекания в ней химической реакции, называют электролитической ячейкой.

Полная электрическая цепь прибора для ЭМА состоит из внутренней цепи (электрохимической ячейки) и внешней цепи, включающей проводники, регуляторы тока (напряжения) и измерительные приборы.

По разновидностям аналитического сигнала ЭМА подразделяют на:

1) кондуктометрию - измерение электропроводности исследуемого раствора;

2) потенциометрию - измерение бестокового равновесного потенциала индикаторного электрода, для которого исследуемое вещество является потенциоопределяющим;

3) кулонометрию - измерение количества электричества, необходимого для полного превращения (окисления или восстановления) исследуемого вещества;

3) вольтамперометрию - измерение стационарных или нестационарных поляризационных характеристик электродов в реакциях с участием исследуемого вещества;

5) электрогравиметрию - измерение массы вещества, выделенного из раствора при электролизе.

ЭМА можно подразделить по признаку применения электролиза. На принципах электролиза базируются кулонометрия, вольтамперометрия и электрогравиметрия; электролиз не используют в кондуктометрии и потенциометрии.

ЭМА имеют самостоятельное значение для прямого проведения химического анализа, но могут применяться как вспомогательные в других методах анализа. Например, использоваться в титриметрии для регистрации конца титрования не с помощью химического цветопеременного индикатора, а по изменению потенциала, электрической проводимости тока и т.д.

Теоретические основы ЭМА

Электрод представляет собой систему, в простейшем случае состоящую из двух фаз, из которых твердая обладает электронной, а другая - жидкая - ионной проводимостью. Твердая фаза с электронной проводимостью считается проводником I рода, а жидкая фаза с ионной проводимостью - II рода. При соприкосновении этих двух проводников происходит образование двойного электрического слоя (ДЭС). Он может быть результатом обмена ионами между твердой и жидкой фазами, или результатом специфической адсорбции катионов или анионов на поверхности твердой фазы при погружении ее в воду или раствор.

При ионном механизме образования ДЭС, например в случае когда химический потенциал атомов на поверхности металла (твердой фазы) больше химического потенциала ионов в растворе, то атомы с поверхности металла будут переходить в раствор в виде катионов: Me  Mez+ + ze-. Освободившиеся электроны при этом заряжают поверхность твердой фазы отрицательно и за счет этого притягивают к поверхности положительно заряженные ионы раствора. В результате на границе раздела фаз образуются два противоположно заряженных слоя, являющихся как бы обкладками своеобразного конденсатора. Для дальнейшего перехода заряженных частиц из одной фазы в другую им необходимо совершить работу, равную разности потенциалов обкладок этого конденсатора. В случае, если химический потенциал атомов на поверхности твердой фазы меньше химического потенциала ионов в растворе, то катионы из раствора переходят на поверхность твердой фазы, заряжая ее положительно: Mez++ze-Me. Как в первом, так и во втором случае указанные процессы протекают не бесконечно, а до установления динамического равновесия, которое можно изобразить обратимым редоксипереходом типа Мe -  Мez+ или в общем случае Ох +  Redz+.

Процессы, при которых отдача или присоединение электронов происходит на электродах, называются электродными.

Нернстом была получена формула, связывающая разность внутренних потенциалов ДЭС с активностями (концентрациями) частиц, участвующих в обратимом редоксипереходе:

,

где  (Me) - потенциал заряженного слоя твердой фазы;

 (раствор) - потенциал прилегающего к твердой фазе слоя раствора;

0 - константа, равная разности  (Me) -  (р-р), при (Ох) = (Red) = 1 моль/л;

R - универсальная газовая постоянная (8,31 Дж/К моль);

T - температура, К;

F - число Фарадея (96 488 Кл/моль);

Z - число электронов, участвующих в редоксипереходе; (Ох) и (Red) - активности окисленной (Ох) и восстановленной (Red) форм вещества в редоксипереходе, моль/л.

Установить внутренние потенциалы отдельных фаз  (Me) и  (р - р), к сожалению, экспериментально нельзя. Любая попытка подключить раствор с помощью провода к измерительному устройству, вызывает появление новой поверхности соприкосновения фаз металл-раствор, то есть возникновение нового электрода со своей разностью потенциалов, влияющей на измеряемую.

Однако можно измерить разность  (Me) -  (р - р) с помощью гальванического элемента. Гальваническим элементом называется система, составленная из двух разных электродов, обладающая способностью самопроизвольно преобразовывать химическую энергию протекающей в нем окислительно-восстановительной реакции в электрическую энергию. Электроды, из которых составлен гальванический элемент, называются полуэлементами. Протекающая в гальваническом элементе окислительно-восстановительная реакция пространственно разделена. Полуреакция окисления протекает на полуэлементе, называемом анодом (отрицательно заряженном электроде), а полуреакция восстановления - на катоде.

Электродвижущая сила (ЭДС) гальванического элемента алгебраически складывается из разностей внутренних потенциалов составляющих его электродов. Поэтому, если в качестве одного полуэлемента взять электрод с известной величиной разности внутренних потенциалов  (Me) -  (раствор), то по измеренной величине ЭДС можно вычислить искомую разность потенциалов исследуемого электрода.

Для этой цели принято использовать стандартный (нормальный) водородный электрод (см. рис. 1). Он состоит из платиновой пластинки или проволоки, покрытой платиновой чернью (мелкодисперсной платиной), погруженной в раствор кислоты с =1моль/л, давление водорода над которым 0,1 МПа (1 атм). Под каталитическим влиянием платиновой черни в электроде осуществляется обратимый редоксипереход . Разность внутренних потенциалов для водородного электрода в соответствии с формулой Нернста равна:

Рис. 1. Схема стандартного водородного электрода

;

так как [H+] = 1моль/л, а р(H2) = 1атм, то

(Me) - (р - р) =

Решением ИЮПАК условно принято считать величину = 0,00 В. Очевидно, что в этом случае измеренная величина ЭДС гальванического элемента, в состав которого входит водородный электрод, равна разности внутренних потенциалов второго электрода. Эту ЭДС принято называть электродным потенциалом или редоксипотенциалом и обозначать буквой Е. Переход от внутренних потенциалов к редоксипотенциалам не меняет характера формулы Нернста:

.

Для большинства электродов величина электродного потенциала при единичных активностях окисленной и восстановленной форм (Е0) измерена и приведена в справочниках.

При нормальных условиях и переходе от натуральных к десятичным логарифмам предлогарифмический множитель становится равным 0,0591, и формула приобретает вид

.

Следует помнить, что формула Нернста связывает равновесный потенциал с активностями (концентрациями) редоксипары, т.е. потенциал, который приобретает изолированный электрод. Поэтому для аналитических цепей измерение потенциала электрода должно проводиться в условиях, максимально приближенных к равновесным: при отсутствии тока во внешней цепи гальванического элемента и через время, достаточное для достижения равновесия. Однако в реальных условиях ток может протекать через электроды. Например, ток протекает через электроды в гальваническом элементе, работа которого связана с переходом заряженных частиц через границу раздела "раствор-твердая фаза", а это направленное движение частиц есть ток. Ток протекает через электроды при электролизе, под которым подразумевают совокупность окислительно-восстановительных процессов, протекающих на электродах в растворах и расплавах электродах электролитов под действием внешнего электрического тока. При электролизе можно осуществить процессы, противоположные протекающим в гальваническом элементе.

При протекании тока (i) через электрод потенциал его изменяется и приобретает некую величину Еi, отличную от потенциала электрода в равновесных (изолированных) условиях Ер. Процесс смещения потенциала от Ер до Еi и разность Еi-Ep называют поляризацией  =Ei-Ep.

Процессам поляризации подвержены не все электроды. Электроды, потенциал которых не изменяется при протекании через них тока, называют не поляризуемыми, а электроды, для которых свойственна поляризация, называют поляризуемыми.

К не поляризуемым относятся, например, электроды II рода, к поляризуемым - все металлические и амальгамные.

В качестве ионитов используют природные или синтетические, твердые, нерастворимые в воде неорганические и органические высокомолекулярные кислоты, основания и их соли, содержащие в своем составе активные (ионогенные) группы. Иониты делятся на катиониты и аниониты.

Катиониты - сорбенты, способные к обмену катионами. катиониты содержат в своем составе ионогенные группы различной степени кислотности, например сульфогруппу - SO3H, карбоксильную группу - COOH, ион водорода которых способен к катионному обмену.

Химическую формулу катионитов схематично изображают RSO3-H+, RSO3-Na+ или просто [R] H, [R] Na, где R - сложный органический радикал. Наиболее часто применяются сильнокислотные катиониты марок КУ-1, КУ-2, СДВ-2 и др.

Схема катионного обмена:

[R] H + Ме+  [R] Ме + H+

Аниониты - сорбенты, способные к обмену анионами.

Аниониты содержат в своем составе основные ионогенные группы, например, аминогруппы различной степени замещения: - NH2, =NH, N, = NH2OH, NHOH, способные к обмену гидроксид-ионов на различные анионы. Формулы анионитов схематично изображают: RNH3+OH - , RNH3+Cl - или просто [R] OH, [R] Cl. Cхема анионного обмена:

[R] OH+A -  [R] A+ OH -

Применяют аниониты марок АВ-17, АН-1, ЭДЭ-10 и др.

Существуют также амфотерные иониты - сорбенты, способные как к катионному, так и к анионному обмену.

Поглощение ионов зависит от природы и структуры ионита, природы анализируемых веществ, условий проведения эксперимента (температуры, pH и др.). Каждый ионит способен поглощать определенное количество ионов, т.е. обладает определенной емкостью. Различают статическую обменную емкость (СОЕ) - количество ммоль эквивалентов иона, поглощенного за определенное время 1 г сухого ионита, и динамическую обменную емкость (ДОЕ) - количество эквивалентов ионов, поглощенных слоем ионита высотой 20 см и поперечным сечением 1 см2 при скорости пропускания 0,5 дм3/ч.

Эффект поглощения данного иона характеризуется коэффициентом распределения

Красп = ,

где Сионит и Ср-р - равновесные концентрации ионов в соответствующих фазах; m - масса ионита; г; V - объем водной фазы, см3.

Ионный обмен является физико-химическим процессом, поэтому на коэффициент разделения влияют как химические, так и чисто физические факторы.

К химическим относятся следующие факторы: рН раствора, природа разделяемых ионов, их концентрация в растворе, склонность к гидратации, химический состав ионита и т.д. Например, с увеличением рН катионит увеличивает обменную емкость, а анионит - уменьшает.

К физическим факторам относятся: скорость протекания раствора через колонку, размер зерен ионита, высота колонки, температура раствора и т.д.

Для достижения оптимального разделения существенно подобрать необходимое количество ионита. Если известна константа распределения Красп и емкость данного ионита Q, то величина отношения массы ионита (m, г) к объему анализируемого раствора (V, см3), которая обеспечит уменьшение концентрации иона Меn+ в растворе от начальной величины Сн до требуемого значения Ск,

.

Перед анализом ионообменную колонку регенерируют, т.е. переводят заполняющий ее ионит в определенную ионообменную форму. Зарядка катионита Н+ ионами, а анионита ОН ионами проводится путем пропускания через колонку определенного количества кислоты или основания. Затем ионит отмывают водой от избытка кислоты или основания и пропускают через него с определенной скоростью анализируемый раствор. Колонку промывают водой или другим элюентом, собирая элюат целиком или по фракциям. Ионы, поглощенные ионитом, могут быть элюированы соответствующим растворителем. Катионы, как правило, элюируют кислотой:

[R] Me + H+  [R] H + Me+;

а анионы - щелочью:

[R] A + OH [R] OH +A.

Ионообменную хроматографию применяют в следующих случаях:

· для разделения компонентов анализируемой смеси, отделения катионов и анионов, разделения катионов, разделения анионов и т.д. Например, при добавлении к смеси ионов Cu2+, Zn2+, Cd2+, Pb2+, Bi3+ соляной кислоты образуются хлоридные комплексы [CuCl4] 2-, [ZnCl4] 2-, [CdCl4] 2-, [PbCl3] - [BiCl4] - , стойкость которых растет от Cu к Bi. При пропускании через анионитную колонку комплексы поглощаются. Далее последовательно вымывают металлы разбавленной HCl, H2O и HNO3: 2-молярным раствором HCl вымывают Cu, 0.6 М HCl - Zn, 0.3М HCl - Cd, H2O - Pb, HNO3 - Bi;

· для получения аналитических концентратов. при пропускании больших объемов разбавленных растворов через слой ионита и последующем извлечении поглощенного вещества малым объемом растворителя возможно повышение концентрации вещества в 200-500 раз;

· для обнаружения ионов. Разработаны методы выделения и обнаружения всех наиболее важных ионов.

Гельхроматография - это совершенно своеобразный вид хроматографии, основанный на использовании различия в размерах молекул разделяемых веществ. Метод называют также гельфильтрационным или ситовым. НФ является растворитель, находящийся в порах геля. Гелем называют студнеобразные коллоидные растворы, в которых разбухшие частицы твердой фазы равномерно распределены в жидкой фазе.

Гель готовят на основе природных (крахмал, агар-агар) или синтетических (декстран, полиакриламид и др.) соединений.

В процессе гельхроматографирования могут быть отделены мелкие частицы, способные проникать в поры геля, от крупных. Меняя состав растворителя, можно менять степень набухания твердой фазы и, следовательно, размеры пор геля, что позволяет проводить тонкие разделения смесей.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно