Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Электрические цепи постоянного тока

Тип Реферат
Предмет Физика
Просмотров
758
Размер файла
43 б
Поделиться

Ознакомительный фрагмент работы:

Электрические цепи постоянного тока

РЕФЕРАТ

по дисциплине «Электротехника»

на тему: «Электрические цепи постоянного тока»

Курчатов

2009


Содержание

1.Электрические цепи постоянного тока

1.1.Основные понятия, определения и законы

1.2.Расчет линейных электрических цепей с использованием законов Ома и Кирхгофа

1.3.Основные методы расчета сложных электрических цепей

1.3.1.Метод контурных токов

1.3.2.Метод узловых потенциалов

1.3.3.Метод эквивалентного генератора

Литература


ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1 Основные понятия, определения и законы

Электрической цепью называют совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об ЭДС, токе и напряжении.

Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, в противном случае — нелинейным.

Линейная электрическая цепь — цепь, все элементы которой являются линейными.

Нелинейная электрическая цепь — цепь, содержащая хотя бы один нелинейный элемент.

Электрическая схема — графическое изображение электрической цепи, содержащее условные обозначения ее элементов и способы их соединения. Электрическая схема простейшей электрической цепи с источником ЭДС, обладающим внутренним сопротивлением R0, и приемником электрической энергии с сопротивлением Rн, представлена на рис. 1.1.

Рис. 1.1.

Ветвь электрической цепи (схемы) — участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов. Количество ветвей в электрической схеме принято обозначать буквой «p».

Узел — место соединения трех и более ветвей. Ветви, присоединенные к одной паре узлов, называют параллельными. Число узлов принято обозначать буквой «q».

Контур — любой замкнутый путь, проходящий по нескольким ветвям.

Независимый контур — контур, в состав которого входит хотя бы одна ветвь, не принадлежащая другим контурам. Число независимых контуров в электрической схеме n = p - (q - 1).

В электрической схеме, представленной на рис. 1.2, три узла (q = 3), пять ветвей (p = 5), шесть контуров и три независимых контура (n = 3). Между узлами 1 и 3 имеются две параллельные ветви с источниками ЭДС Е1 и Е2, между узлами 2 и 3 также имеются две параллельные ветви с резисторами R1 и R2.

Условные положительные направления ЭДС источников, токов в ветвях и напряжений между узлами или на зажимах элементов цепи необходимо задать для правильной записи уравнений, описывающих процессы в электрической цепи или ее элементах. На электрических схемах их указывают стрелками (см. рис. 1.2):

а) для ЭДС источников — произвольно, при этом полюс (зажим), к которому направлена стрелка, имеет более высокий потенциал по отношению к другому полюсу (зажиму);

б) для токов в ветвях, содержащих источники ЭДС — совпадающими с направлением ЭДС, во всех других ветвях — произвольно;

в) для напряжений — совпадающими с направлением тока в ветви или элементе цепи.


Рис. 1.2

Источник ЭДС на электрической схеме можно заменить источником напряжения, при этом условное положительное направление напряжения источника задается противоположным направлению ЭДС (см. рис. 1.2, напряжения U1 и U2)

Закон Ома для участка цепи:

I = U / R или U = RI. (1.1)

Для ветви 1 – 2 (см. рис. 1.2): U3 = R3I3 – называют напряжением или падением напряжения на резисторе R3, I3 = U3 / R3 – ток в резисторе.

Первый закон Кирхгофа: сумма токов в узле равна нулю

(1.2)

где т — число ветвей, подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут с одним знаком, как правило со знаком «плюс», а токи, направленные от узла, — с противоположным знаком. Например, для узла 1 (см. рис. 1.2) I1 + I2 - I3 = 0.

Второй закон Кирхгофа. Формулировка 1: сумма ЭДС в любом контуре электрической цепи равна сумме падений напряжений на всех элементах этого контура

(1.3а)

где n — число источников ЭДС в контуре, m — число элементов с сопротивлением Rkв контуре, Uk = RkIk — напряжение или падение напряжения на k-м элементе контура.

Формулировка 2: сумма напряжений на всех элементах контура, включая источники ЭДС, равна нулю, т. е.

(1.3б)

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

3) записать уравнение, пользуясь одной из формулировок, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с направлением обхода контура, и со знаком «минус», если они противоположны.

Например, для контура II (см. рис. 1.2) при указанном направлении обхода уравнения имеют вид

E2 = R02I2 + R3I3 + R4I4 (формулировка 1)

–U2 + U02 + U3 + U4 = 0. (формулировка 2)

Вторым законом Кирхгофа можно пользоваться и для определения напряжения между двумя произвольными точками схемы. Для этого в уравнения (1.3) необходимо ввести напряжение между этими точками, которое как бы дополняет незамкнутый контур до замкнутого. Например, для определения напряжения Uab (см. рис. 1.2) можно написать уравнение U0l – U02 – Uab = 0, откуда Uab = E1 – E2 = U1 – U2.

Закон Джоуля-Ленца: количество теплоты, выделяемой в элементе электрической цепи, обладающем сопротивлением R, за время t равно:

Q = PI2t = GU2t = UIt = Pt, (1.4)

где G = 1 / R – электрическая проводимость, Р = UI – электрическая мощность.

1.2 Расчет линейных электрических цепей с использованием

законов Ома и Кирхгофа

Законы Ома и Кирхгофа используют, как правило, при расчете относительно простых электрических цепей с небольшим числом контуров, хотя принципиально с их помощью можно рассчитать сколь угодно сложные электрические цепи. Однако решение в этом случае может оказаться слишком громоздким и потребует больших затрат времени. По этой причине для расчета сложных электрических цепей разработаны более рациональные методы расчета, основные из них рассмотрены ниже.

При расчете электрических цепей в большинстве случаев известны параметры источников ЭДС или напряжения, сопротивления элементов электрической цепи, и задача сводится к определению токов в ветвях цепи. Зная токи, можно найти напряжения на элементах цепи, мощность отдельных элементов и электрической цепи в целом, мощность источников и др.

Для определения токов в ветвях электрической цепи необходимо составить систему из «p» уравнений и решить ее относительно токов. При этом по первому закону Кирхгофа записывают (q – 1) уравнений для любых узлов цепи, а недостающие n = p – (q – 1) уравнений записывают по второму закону Кирхгофа для n независимых контуров.

1.3 Основные методы расчета сложных электрических цепей

1.3.1 Метод контурных токов (МКТ)

При расчете цепи этим методом составляют систему уравнений по второму закону Кирхгофа для всех независимых контуров. Затем полагают, что в каждом независимом контуре «к» протекает свой контурный ток Iкк условное положительное направление которого совпадает с направлением обхода этого контура. Если ветвь является общей для нескольких контуров, то ток в ней будет равен алгебраической сумме контурных токов, замыкающих эту ветвь.

В общем случае система уравнений для цепи, имеющей и независимых контуров имеет следующий вид:

R11I11 + R12I22 + R13I33 +… + R1nInn = E11,

R21I11 + R22I22 + R23I33 + … + R2nInn = E22, (1.5)

R31I11 + R32I22 + R33I33 + … + R3nInn = E33,

…………………………………………...

Rn1I11 + Rn2I22 + Rn3I33 + … + RnnInn = Enn,

где E11, E22, E33, … , Enn – контурные ЭДС, равные алгебраической сумме ЭДС в соответствующих контурах, причем ЭДС считают положительными, если их условные положительные направления совпадают с направлением обхода контура (контурного тока), и отрицательными, если их направления противоположны; R11, R22, R33, … , Rnn — собственные сопротивления тех же контуров, равные сумме сопротивлений всех резисторов, принадлежащих соответствующему контуру; R12 = R21, R23 = R32 и так далее — взаимные сопротивления контуров, равные сумме сопротивлений резисторов, принадлежащих одновременно двум контурам, номера которых указаны в индексе. При этом взаимные сопротивления надо принимать: а) положительными, если контурные токи в них направлены одинаково; б) отрицательными, если они направлены встречно; в) равными нулю, в) равными нулю, если контуры не имеют общей ветви.

Число независимых контуров, следовательно, и уравнений, определяют из соотношения n = p – (q – 1), где по-прежнему p — число ветвей, а q – число узлов. Таким образом, МКТ позволяет понизить порядок системы уравнений на (q – 1). После решения системы уравнений относительно контурных токов определяют токи в ветвях, предварительно задав их условные положительные направления.

Например, для схемы (рис. 1.3), имеющей три независимых контура I, II и III с контурными токами I11, I22 и I33 в них, система уравнений имеет вид

R11I11 + R12I22 + R13I33 = E11,

R21I11 + R22I22 + R23I33 = E22, (1.6)

R31I11 + R32I22 + R33I33 = E33,

где

E11 = E1 – E2, E22 = E2, E33 = –E5;

R11 = R1 + R2, R22 = R2 + R3 + R4, R33 = R4 + R5;

R12 = R21 = –R2, R23 = R32 = –R4, R13 = R31 = 0


Рис. 1.3

Токи в ветвях при указанных на схеме условных положительных направлениях:

I1 = I11, I2 = I22 – I11, I3 = I22,

I4 = I22 – I33, I5 = –I33

Если некоторые токи в ветвях окажутся отрицательными, его означает, что действительные направления токов в них противоположны условно принятым.

1.3.2 Метод узловых потенциалов (МУП)

Ток в любой ветви электрической цепи можно определить по известным потенциалам узлов, к которым она подключена, или напряжению между этими узлами.


Согласно второму закону Кирхгофа для любой ветви электрической цепи, схема которой приведена на рисунке, при заданных условных положительных направлениях ЭДС, тока и напряжения и указанном направлении обхода контура можно написать уравнение -Ukm + RkmIkm = Ekm, откуда

Ikm = (Ekm + Ukm)/Rkm = [Ekm + (φk – φm)]Gkm(1.8)

где Ukm = (φk - φm) — напряжение между узлами «k» и «m», а φk и φm — потенциалы этих узлов, причем φk> φmGkm = 1/Rkm– проводимость ветви.

Метод расчета электрических цепей, в котором в качестве неизвестных принимают потенциалы узлов схемы, называют методом узловых потенциалов. Метод более эффективен по сравнению с методом контурных токов в случае, если число узлов в схеме меньше или равно числу независимых контуров, так как в любой электрической цепи потенциал одного из узлов можно принять равным нулю, а число узлов, потенциалы которых следует определить относительно этого узла, станет равным (q -1).

Система уравнений для неизвестных потенциалов любой электрической цепи, имеющей q узлов, может быть получена из системы уравнений, составленной по первому закону Кирхгофа для (q - 1) узлов, если в ней токи в ветвях выразить через потенциалы узлов в соответствии с (1.8). В общем случае эта система имеет вид

G11φ1 + G12φ2 + G13φ3 + … + G1nφn = Iy1,

G21φ1 + G22φ2 + G23φ3 + … + G2nφn = Iy2, (1.9)

Gn1φ1 + Gn2φ2 + Gn3φ3 + … + Gnnφn = Iyn

где n = (q - 1); φ1, ф2…φn — потенциалы 1, 2, … n узлов относительно узла q, потенциал которого принят равным нулю; Gkk — сумма проводимостей всех ветвей, подключенных к узлу k; Gkj = Gjk — сумма проводимостей ветвей между узлами «j» и «k», взятая со знаком «минус». Если же между узлами «j» и «k» нет ветвей, то принимают Gkj = Gjk = 0; Iyk — узловой ток, равный сумме токов всех ветвей, содержащих источники ЭДС и подключенных к узлу «k», причем каждый из них определяется по уравнению (1.8) при Ukm = 0. Токи, направленные к узлу, берут со знаком «плюс», а от узла — со знаком «минус».

После решения системы (1.9) относительно узловых потенциалов определяют напряжения между узлами Ukm и токи в ветвях в соответствии с (1.8). Токи в ветвях, не содержащих источников ЭДС, определяют аналогично, полагая в уравнении (1.8) Ekm = 0.

Например, для электрической цепи (см. рис. 1.3), если принять потенциал узла 3 равным нулю (φ3 = 0), система уравнений будет иметь вид

G11φ1 + G12φ2 = Iy1, (1.10)

G21φ1 + G22φ2 = Iy2,

где

Метод узловых потенциалов особенно эффективен при расчете электрических цепей с двумя узлами и большим количеством параллельных ветвей, при этом, если принять потенциал одного из узлов равным нулю, например, j2 = 0, то напряжение между узлами будет равно потенциалу другого узла


(1.11)

где п — число параллельных ветвей цепи, а m — число ветвей, содержащих источники ЭДС.

Рис. 1.4

1.3.3 Метод эквивалентного генератора (МЭГ)

Метод позволяет в ряде случаев относительно просто определить ток в какой-либо одной ветви сложной электрической цепи и исследовать поведение этой ветви при изменении ее сопротивления. Сущность метода заключается в том, что по отношению к исследуемой ветви сложная цепь заменяется эквивалентным источником (эквивалентным генератором — ЭГ) с ЭДС Ег и внутренним сопротивлением Rг.

Например, по отношению к ветви с резистором R3 электрическую схему, приведенную на рис. 1.4, а, можно заменить эквивалентной (см. рис. 1.4, б).

Если известны ЭДС и сопротивление эквивалентного генератора, то ток ветви может быть найден как

I3 = Eг / (Rг + R3) (1.12)

и задача сводится к определению значений Ег и Rг.

Уравнение (1.12) справедливо при любых значениях сопротивления резистора R3. Так, при холостом ходе ЭГ, когда узлы 1 и 2 разомкнуты, I3 = 0 и Ег = U0, где U0 = (φ1 – φ2) — напряжение холостого хода эквивалентного генератора, φ1 и φ2 — потенциалы узлов 1 и 2 в этом режиме.

При коротком замыкании ветви (R3 = 0) ток в ней Iкз = Eг/Rг = U0/Rг,откуда внутреннее сопротивление ЭГ Rг = U0/Iкз. Таким образом, для определения параметров эквивалентного генератора необходимо рассчитать любым из известных методов потенциалы узлов φ1 и φ2 в режиме холостого хода ЭГ и ток короткого замыкания в исследуемой ветви.

Приведенный метод определения параметров эквивалентного генератора является наиболее универсальным, однако в ряде случаев сопротивление Rг, проще рассчитать как эквивалентное сопротивление между разомкнутыми узлами исследуемой ветви сложной цепи в предположении, что все источники ЭДС в цепи закорочены, как показано на рис. 1.4, в.


Литература

1. Иванов И. И., Лукин А. Ф., Соловьев Г. И.

И 20 Электротехника. Основные положения, примеры и задачи. 2-е изд., исправленное. — СПб.: Издательство «Лань», 2002.

2. Иванов И. И., Равдоник В.С.

Электротехника: Учебник для вузов. — М.: Высшая школа, 1984.

3. Электротехнический справочник. В 3-х т. Т. 1. Э45 Общие вопросы. Электротехнические материалы/ Под общ. ред. профессоров МЭИ В. Г.Герасимова, П. Г. Грудинского, Л. А. Жукова и др. — 6-е изд., испр. и доп. — М.: Энергия, 1980.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно