Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Молекулярные спектры

Тип Реферат
Предмет Химия
Просмотров
1228
Размер файла
95 б
Поделиться

Ознакомительный фрагмент работы:

Молекулярные спектры

“Молекулярные спектры”

Часть1. Общие характеристики спектров.

Часть2. Электронные спектры поглощения молекул.

Часть3. Колебательные спектры поглощения молекул.


Часть 1. Общие характеристики спектров. Теоретический минимум.

· Энергия спектрального перехода.

· Энергетические характеристики.

· Диапазоны излучения и области молекулярной спектроскопии.

Спектральный переход в атоме или в молекуле вызван поглощением или испусканием электромагнитного излучения. Электромагнитное излучение состоит из частиц-фотонов, не имеющих массы покоя. Энергия фотона E определяется частотой излучения и равна Eh Коэффициент пропорциональности - константа Планка, равная h=6.627´10-34Дж×с=6.627´10-27 эрг×с. Поглощение фотона приводит к возбуждению атома или молекулы с более низкого уровня Eна более высокий энергетический уровень E*. Баланс энергии при переходе описы­вается уравнением Планка-Эйнштейна

.

Уровни дискретны, и поглощаемые энергии также дискретны.

Поэтому регистрируемые частоты образуют также дискретное множество, и их можно нумеровать индексами уровней:

.

В большинстве молекулярных спектрах в первую очередь проявляется переход с основного на первый возбуждённый уровень. Единицы измерения энергии диктуются возможностями наиболее точной калиб­ровки регистрирующего устройства.

В области оптической спектроскопии излучение разделяют с помощью дифрак­ционных решёток, призм, линз. Очень хорошо разработаны способы точного измерения длин волн. Поэтому и энергию излучения принято калибровать в таких единицах, которые наиболее соответствуют конкретной экспериментальной технике. Такой единицей является обратная длина волны 1/. Её называют волновым числом и обозначают .

Вся накопленная до настоящего времени информация об энер­гиях переходов выражается в обратных сантиметрах (см-1). Этим обстоятельством диктуется выбор системы единиц. Удобна система СГС (сантиметр, грамм, секунда). Единица энергии в ней ЭРГ.

Связь длины волны с частотой обратно пропорциональная, а с волновым числом прямо пропорциональная, константа пропорциональности – скорость света c=3´1010см/с=3´108м/с:

.

Отсюда уравнение Планка –Эйнштейна можно представить в виде

На этом основании можно уровни энергии непосредственно выразить в единицах волнового числа. Так поступают в атомной спектроскопии.

Если измерено волновое число спектрального перехода, то одно из равенств даёт

Следуя этой формуле, уровни энергии можно выразить в единицах волнового числа. Для этого следует разделить их на скорость света и константу Планка

Так поступают в атомной спек­троскопии.

Уровни энергии, выраженные в единицах волнового числа, называют спектральными термами. Это величины Tn и Tm.

Электронные переходы в молекулах осуществляются ориентировочно в области значений волновых чисел порядка 104 см-1.

Длины волн такого излучения лежат в диапазоне 10-4¸10-5 см.

Это сотни нанометров (1 нм=10-9м=10´10-8см=10 A0).

Область цветного зрения человека охватывает длины волн 400-700 нм.

Непосредственно к этой области примыкают диапазоны:

- ультрафиолетовый со стороны квантов большей энергии и

- инфракрасный со стороны квантов меньшей энергии.

Обычная область изучения валентных электронных возбуждений молекул охватывает видимый и ближний ультрафиолетовый диапазоны.

Колебательные переходы в молекулах осуществляются ориентировочно в об­ласти значений волновых чисел порядка 102¸103 см-1.

Длины волн такого излучения лежат в диапазоне 10-2¸10-3 (до 10-4) см.

Это инфракрасный диапазон излучения. С ним граничит видимый (со стороны

больших энергий) и микроволновой (со стороны меньших энергий)

Обычная область изучения молекулярных колебаний охватывает инфракрасный диапа­зон и примыкает к диапазонам излучений видимого (обертоны колебаний) и микроволнового (вращательно-колебательные движения молекул).

Часть 2. Электронные спектры поглощения. Электронные спектры красителей и модель одномерного ящика.

Для химии наибольший интерес представляют спектральные переходы электронов между уровнями граничных орбиталей молекул (ВЗМО и НСМО).

Наиболее лабильные внеш­ние валентные электроны молекул переходят на близлежащий вакантный уровень. Электронные спектры молекул обычно регистрируют в виде широких полос с доста­точно выраженным максимумом поглощения (рис. ).

Среди всех регистрируемых полос электронного спектра при переходе ВЗМО«НСМО частота, волновое число и энергия кванта минимальны, а длина волны максимальна. Реальные полосы часто не столь гладкие кривые из-за дополнительных переходов в молекуле...

Полезно рассмотреть задачу, в которой измеренные энергетические параметры электронных спектров удаётся количественно связать с уровнями граничных МО. Это класси­ческая задача о максимумах полос поглощения в электронных спектрах карбоцианиновых красителей, решённая Бейлисом и Куном.

Примитивная модель одномерного потенци­ального ящика оказывается на удивление точной при описании энергий возбуждения ВЗМО«НСМО.

Задача 1

В гомологическом ряду, образованном четырьмя карбоцианиновыми красителями измерены максимумы полос электронных спектров поглощения. Формулы соединений и

измеренные величины следующие. Определите длину повторяющегося молекулярного фрагмента в гомологическом ряду полиенов.


Таблица.

Исходные данные, промежуточные вычисления и конечный результат

ИзмереноВычисления студентов в ходе решения задачи
maxmax см-1(9+2k)×maxЗначения 1/a2 < aCH >,
kЭкспер.см
0590016949.15 9×16949 = 1525405.0325×1015
1710014084.5011×14084 = 1549245.1117×1015
2820012195.1213×12195 = 1585355.2305×1015
3930010752.6915×10753 = 1612955.3196×1015
Усреднение Þ 0.5174×10161.39×10-8

1) Предварительные соображения.

Частота спектрального перехода при электронном возбуждении молекулы отчётливо изменяется с увеличением числа звеньев в мостике -( C=C)k-. Простейшая из характеристик этой цепи – её длина. Она складывается из длин связей разной кратности -C-C- и -C=C-.

В цепи сопряжения эти длины чередуются но, как известно, частично выравниваются. Однако их суммарная протяжённость почти не меняется.


2) Нам предстоит:

– связать наблюдаемые длины волн или частоты поглощаемого излучения с абсолютными размерами молекул с помощью теоретической модели,

– вычислить усреднённую длину связи C¼C в цепи -сопряжения из имеющихся спектральных данных.

–сравнить результаты расчёта с экспериментальными данными.

3) Примем во внимание, что

– Атомы C и N являются соседями в Периодической системе. Экспериментальные длины связей с одинаковой кратностью, т.е. C-C и C-N, или C=C и C=N, или CºC и CºN примерно равны, и в расчётах будем считать их равными.

4) Максимально упростим вычисления. Для этого

– не будем разделять связи разной кратности в системе сопряжения. Пренебрежём малыми отличиями их длин, и введём усреднённую длину связи, обозначая её a.

5) Отметим, что

5.1 Простейшая теоретическая модель для одной частицы в квантовой механике это известная модель одномерного потенциального ящика, в которой уровни энергии зависят от линейной протяжённости системы.

5.2 Модель ящика используем для граничных -электронов, которые находятся на высшей занятой МО (ВЗМО).

5.3 С ВЗМО электрон в молекуле полиена совершает спектральный переход, на ближайшую низшую свободную МО (НСМО). Её также называют низшей вакантной МО (НВМО).

5.4 Примем, что область делокализации -электронов, в том числе и на граничной занятой МО охватывает не только всю систему сопряжения, но и простирается далее за неё (для простоты примем по половине связи). Вследствие принципа Гейзенберга электрон невозможно локализовать.

5.5 При спектральном возбуждении молекулы поглощается фотон, и за счёт поглощённой энергии один электрон совершает переход между граничными МО (-ВЗМО Û-НВМО).

5.6 Энергия перехода, а с нею длина волны, частота и волновое число поглощаемого излучения определяется разностью уровней DE этих двух граничных МО (ГМО).

5.7 Энергетические уровни ГМО необходимо выразить как функции от длины полиеновой цепи между двумя одинаковыми концевыми гетероциклическими азотсодержащими остатками в молекулах соединений в изучаемом ряду красителей.

6) Применим для этих красителей модель свободного электрона (ящика).

Цель эадачи состоит в том, чтобы проверить, насколько абсолютные уровни энергии электронов, “размазанных” на делокализованных- пи-МО в молекулах органических полиенов согласуются с моделью одномерного потенциального ящика.

Примечания: Введённые допущения дополняют теорию МОХ, и ей не противоречат. В простой теории МОХ не используются в явной форме структурные признаки, в том числе длины связей и размеры молекулы. В простой теории МОХ отсутствует физически конкретная шкала энергии. Единицей энергии является отвлечённый параметр - хюккелевский резонансный интеграл.

Первый шаг в расчёте - построение теоретической модели и выяснение схемы вычислений:

6.1) Правило квантования уровней ящика: .

6.2) Номер граничного уровня -ВЗМО равен числу электронных пар – числу двойных связей. В кольцах и вне полиенового мостика это число равно 4 и в полиеновом мостике ещё kи всего получаем число -электронных пар (4+k), это же есть и номер ВЗМО (4+k) (см. структурную формулу). Номер m уровня НВМО, на которую при возбуждении переходит электрон, на 1 больше, и равен m=n+1=4+k+1=5+k.

6.3) То же самое число (4+k) равно количеству чередующихся фрагментов с двойной и одинарной связью типа C=C-Cмежду двумя атомами N. Длина фрагмента N+=C-C(или N -C=C) в циклах считается равной C =C-C. Если усреднённая из-за сопряжения длина связи C¼Cравнаa, то длина двух связей в звене цепи сопряжения равна 2a, и расстояние между атомами Nравно 2×(4+k) a.

6.4) Учтём дополнительную протяжённость электронного облака за пределы системы сопряжения, добавляя к ней ещё одну длину связи. В таком случае длина ящика L, в котором делокализован электрон, равна L= 2(4+k)a +a = (9+2k)a.

6.5) Подытожим только что полученные расчётные формулы:


6.6) Необходимые постоянные в СГС:

m=9.1´10 -28 г (масса электрона),

c=3´1010 см/c(скорость света),

h = 6.62´10-27 э×c(константа Планка).

О размерности энергии 1 эрг=1э=1дн×см=1г×см×с2×см=1г×см2×с2.

Окончательно подставляем в формулу и получаем

Можно вычислить усреднённую длину связи.

Вначале удобно вычислить величины 1/a2, затем их арифметически усреднить , и из усреднённого квадрата длиныв завершение извлечь квадратный корень. Результат расчёта представ­лен в таблице в нижней клетке последнего столбца....

Это величина равна

,

Её-то и отождествим с искомым значением усреднённой длины связи СС.

Сравним результат с табличными данными.

У одинарная связи C-C в молекуле этана длина 1.53 А0.

У двойной связи C=C в молекуле этена длина 1.33 А0.

Длина выровненной связи C¼C в молекуле бензола 1.39 А0.

Простое арифметическое усреднение даёт a=1.43 А0

Расчёт из электронных спектров дал <a>=1.39 А0

в бензоле a=1.39 А0

Согласие удивительное !!! Особенно с бензолом !!!

Конечно же, нами был использован ряд приёмов подгонки...

В данной задаче продемонстрирован довольно типичный набор приёмов, которыми пользуются химики в отсутствие достаточно строгих способов расчёта молекулярных характеристик.

ДОМАШНЕЕ ЗАДАНИЕ по разделу:

Даниэльс-Олберти, стр. Раздел 15.14, задача-пример 15.6,

Задачи 15.64, 15.65


Часть 3. Молекулярные колебания. Константа упругости химической связи. Колебательные деформации ядерного остова. Амплитуды колебаний. Спектры ИК-поглощения.

Вводная теория (если нет времени, можно опустить)

Природа молекулярных колебаний

Истинный энерге­тический уровень связывающего со­стояния 2-х атом­ной молекулы не может совпадать непосредственно с минимумом потенциальной кривой

в адиабатическом приближении. Это означало бы на­рушение принципа Гейзенберга R×px³h.

Если RºR0, тоRº0, и это невозможно...!!!

Проблема решается за счёт поднятия истинного уровня над минимумом, и при R=R0 возникает необходимый диапазон отклонений R¹0. Они периодичны – это колебания. Максимальное отклонение от положения равновесия– амплитуда колебания.

Потенциал молекулярных колебаний. Амплитуда.

Около минимума вблизи R0 адиабатический потенциал – энергетическую кривую можно ап­проксими­ровать параболой. Периодически меняющееся смещение равно x=R-R0. Движение ядер с параболическим по­тенциалом – гармоническое колебание. Его законы, полученные в классической физике, в основном справед­ливы и в квантовой механике. Спра­ведливы известные соотношения. Потенциальная энергия и силовая кон­станта равны

Формула квантования энергии осциллятора:

Возбуждение молекулярных колебаний при поглощении излучения.

Так, регистрируя резонансную частоту поглощаемого излучения, тем самым изме­ряем и собственную частоту молекулярного колебания.

Валентные колебания (периодические смещения ядер от равновесия):

Здесь представлены величины:

Колеблющаяся масса связи A-B рассчитывается как приведённая величина:

N0-число Авогадро, MA , MBмолекулярные массы в у.е.,

2 =2c(1/) - Круговая частота колебания.

Последняя формула позволяет вычислить амплитуду колебания на основании его соб­ственной частоты. Линейное колебание это простейший вид молекулярной деформации.

Если оно состоит лишь в удлинении и сокращении связи, то называется ва­лентным. Амплитуда вычисляется на основании лишь собственной частоты и даёт возможность количе­ственно и наглядно оценить степень деформируемости молекулы.

ПРИМЕРЫ Вы найдёте в кафедральном практикуме-СБОРНИКЕ Методические указания к лабораторным работам по курсу “Физическая химия” 1985год. “колебательная спектроскопия”, 4.5.2.Стр. 41-44, а также в новом практикуме 2002 года издания

Задача 2.

В спектре ИК-поглощения полиэтилена (-CH2-CH2-)2 наблюдается сравнительно небольшое число хорошо выделенных колебательных полос. Это полосы с частотами (волновыми числами) (720, 1420, 2800, 2900) см-1. Две пер­вые полосы принадлежат деформационным колебаниям (маятниковому и нож­ничному). Полосы 2800, 2900 см-1 принадлежат валентным колебаниям. Рассчи­тать амплитуды валентных колебаний на двух низших уровнях (v=0, 1).


Рис. ИК-спектр Полиэтилена (тонкая плёнка)

РЕШЕНИЕ. Удобно выполнить в системе СГС. (Вы можете сделать это и в системе СИ).

В обоих этих колебаниях колеблющаяся масса одна и та же. Это приведённая

1) Приведённая масса связи C-H равна CH= [(12×1)/ (12+1)] / 6.023×1023 г =1.533×10 -24 г

2) В обоих валентных колебаниях (симметричном 2860 и асимметричном 2950) синхронно движутся ядра двух атомов водорода, поэтому колеблющаяся масса удваивается и равна 2×1.533×10 -24 г » 3.07×10 -24 г

3) Круговая частота колебания равна 2×c× (1/)=6.28×3×1010×2850 =5.369×1014 рад/с

4) Величина = (6.62×10-27/2)/ (3.07×10 -24×5.369×1014)= 0.64×10-18 см2

5) Амплитуда нулевого колебательного уровня:

A0=(0.64×10-18см2)1/2 » 0.8×10-9см=0.08 A0

6) Это значение примерно на порядок менее длины связи.

7) Амплитуда первого колебательного уровня:

A0=(3×0.64×10-18см2)1/2 » 1.39×10-9см» 0.14 A0

Амплитуда возрастает на возбуждённых уровнях....

ВЫВОД

Известно, что длина химической связи C-Hв соединениях равна 1.06 - 1.1 A0.

Найденные амплитуды имеют разумные физические значения, составляя в основном и близлежащем возбуждённом состояниях 8-14% от длины связи.

Деформационные колебания (периодические изменения валентных углов): (эти вычисления Вы выполняете по мере возможности)

Периодические изменении валентных углов называются деформационными колеба­ниями. В этом случае амплитуда уже не линейная, а угловая.

Воспользуемся известными аналогиями в описании поступательного и вращательного движений. При переходе от линейного к вращательному движению следует заменить:

линейное смещение x-угловым отклонением .

линейную амплитуду A - угловой амплитудой .

массу  - моментом инерции I.

Константа упругости линейного колебанияk=заменяется аналогичной константой упругости углового (деформационного) колебания=I

Формула для расчёта линейной амплитуды превратится в формулу для вычисления угловой амплитуды.


Задача 2.

В спектре ИК-поглощения полиэтилена (-CH2-CH2-)2 наблюдается сравнительно небольшое число хорошо выделенных колебательных полос. Это полосы с частотами (волновыми числами) (720, 1420, 2800, 2900) см-1. Две пер­вые полосы принадлежат деформационным колебаниям (маятниковому и нож­ничному). Две последние полосы принадлежат валентным колебаниям. Рассчи­тать амплитуды деформационных колебаний на основных уровнях (v=0).

Пример расчёта смотри в практикуме

“Методические указания к лабораторным работам по курсу “Физическая химия””

1985год. “колебательная спектроскопия”, 4.5.2.Стр. 41-44.

Указание. В этой задаче главный упор делается на вычисление моментов инерции. У маят­никового колебания он равен удвоенному моменту инерции связи C-H. У ножничного равен половине момента инерции связи C-H.

Повороты отдельных связей принимаются относительно атома C.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно