Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Бис-малеинимид-олигофенолдисульфидное связующее и материалы на его основе

Тип Реферат
Предмет Химия
Просмотров
1459
Размер файла
105 б
Поделиться

Ознакомительный фрагмент работы:

Бис-малеинимид-олигофенолдисульфидное связующее и материалы на его основе

В настоящее время широкое практическое распространение нашли полимеры на основе ароматических бис-малеинимидов (БМИ) [1]. Однако гомополимеры БМИ являются жесткими густосетчатымп продуктами с невысокой механической прочностью [2], поэтому для улучшения свойств полимеров на основе БМИ проводят их взаимодействие с ди- или полифункциональными пуклеофильными агентами, получая при этом полимеры с гибкими мостиковыми связями между БМИ-фрагментами.

В качестве нуклеофильных агентов для получения полимеров на основе БМИ использованы ди- или полифункциональные амины [3], фенолы [4], тиолы [5, 6] и т. п. Например, при взаимодействии БМИ с дитиофеноламп Сергеевым с сотр. [6, 7], а затем Уайтом и Скайя [8] получены полиимидосульфиды с улучшенными термическими характеристиками. Однако дитиофенолы — труднодоступные продукты вследствие многостадийного их синтеза, поэтому в данной работе термореактивные полимеры с шарнирными атомами серы между ароматическими циклами получены взаимодействием БМИ и олигофенолдисульфидов (ОФС) формулы

(х=1—2, п=2—6), являющихся продуктами прямой поликонденсации фенола с серой в щелочной среде.

Взаимодействие ОФС и БМИ осуществляли смешением компонентов в различных соотношениях при 180° в течение 40 мин с последующим отверждением при этой же температуре в пресс-форме при давлении 50 Мн/м2 [9]. Условия получения и некоторые свойства полученных образцов приведены в табл. 1.

Отвержденные полимеры представляют собой твердые, прозрачные монолитные стекла коричневого цвета, практически нерастворимые в органических растворителях (табл. 1). Содержание гель-фракции во всех образцах >95%. Испытания механических свойств формованных образцов показали, что введение ОФС в БМИ приводит к повышению механической прочности отвержденных образцов. Как видно из табл. 1, наибольшая прочность наблюдается у образцов, содержащих 10—40 вес.% ОФС (полиме ры 2—4).

Прочность на удар этих образцов в 2—3 раза выше по сравнению с образцами гемополимера БМИ (полимер 9). Следует отметить, что стадия образования форполимера, а также отверждение продуктов взаимодействия БМИ — ОФС происходят без выделения низкомолекулярных летучих продуктов реакции, по-видимому, по механизмам полимеризации и поли-лрисоединения.

Поскольку ОФС содержит в структуре дисульфидные связи и гидро-ксильные группы, представляло интерес выяснить, какие из этих функциональных групп принимают участие в реакциях структурирования с БМИ. С этой целью было проведено отверждение в аналогичных условиях БМИ и фенолформальдегидного новолачного олигомера (ФФН), в котором ре-акционноспособными группами по отношению к БМИ могли быть только фенольные гидроксилы. Оказалось, что система БМИ — ФФН также от-верждается в данных условиях без выделения летучих продуктов, вероятно, за счет реакции полиприсоединения гидроксигрупп к двойным связям БМИ. Однако время желатинизации такого связующего (полимер 8) в ~2 раза больше, чем при использовании олигофенолов с дисульфиднымн связями, что указывает на участие дисульфидных связей ОФС в реакциях структурирования. Важно отметить, что механическая прочность отверж-денных образцов полимера 8 существенно ниже, чем с использованием ОФС, и находится на уровне прочности гомополимера БМИ.

Подобно индивидуальным дисульфидам [10] дисульфидные связи в ОФС в данных условиях, по-видимому, гомолитически расщепляются с образованием способных к взаимодействию с двойной связью БМИ шильных макрорадикалов. Это подтверждается ростом интенсивности в ИК-спектрах отвержденных продуктов полосы поглощения 1180 см-1, относящейся к валентным колебаниям связей сукцинимидный цикл — сера [8,11?. Относительный вклад данной реакции в процесс структурирования довольно велик, так как фенольные гидроксилы в этих условиях менее активны и присутствуют в отвержденных продуктах (как следует из ИК-спектров) даже при ~20-кратном избытке БМИ (полимер 1).

Согласно результатам термомеханических испытаний, все отвержден-пые полимеры имеют высокую теплостойкость и не размягчаются до температуры разложения. Следует отметить, что большую деформацию имеют полимеры 6 и 7, полученные с избытком ОФС, а также полимер на основе ФФН, что свидетельствует о более редкой сшивке этих полимеров.

Таким образом, частоту сетки и эластичность связующего на основе БМИ — ОФС можно регулировать соотношением сомономеров.

На базе разработанного связующего получены наполненные стеклопорошком композиционные материалы (КМ). При обработке режимов отверждения КМ на пластометре Канавца установлено, что время пластично-вязкого состояния (рис. 1) и время отверждения (рис. 2) КМ нелинейно уменьшаются с ростом температуры, а при температурах ниже 180° отверждения практически не происходит (максимальное напряжение сдвига не превышает 3,5 МПа).

Рис. 1. Зависимость продолжительности пластично-вязкого состояния композиционных материалов от температуры. Соотношение БМИ:: ОФС=1: 0,1 (2), 1: 0,6 (2) и 1: 1,4 (3)

Рис. 2. Зависимость максимального времени отверждения *макс (-?, 1', 1") и максимального напряжения сдвига аМакс (2, 2', 2") от температуры. Соотношение БМИ: ОФС= 1: 0,1 (1, 2), 1: 0,6 (Г, 2') и 1: 1,4 (2", 2")

Рис. 3. Зависимость текучести пресс-композиции от времени вальцевания (соотношение БМИ:: ОФС=1: 0,1). Текучесть определена по стрелке Рашига при 230°


Оценка максимального напряжения сдвига КМ показывает (рис. 2), что интервал температур отверждения, приводящий к получению жесткого при высоких температурах ПИ, находится в области температур 250— 280° (напряжение сдвига достигает 19,5 МПа).

Уменьшение соотношения БМИ: ОФС приводит к снижению максимально достигаемого напряжения сдвига (рис. 2). Уже при соотношении 1: 0,6 эта величина ниже в 3,5 раза, чем для соотношения 1: 0,1, а при 1: 1,4 КМ при температурах отверждения 180—280° представляет собой слабо сшитый пластичный материал.

Из результатов структурно-механического анализа КМ, отвержденных без сдвиговых деформаций, видно (табл. 2), что максимальная жесткость испытуемых образцов при соотношении БМИ: ОФС=1: 0,1 достигает максимального значения (27—29 МПа) уже через 3—5 мин. Уменьшение соотношения БМИ: ОФС в КМ приводит к образованию более редкой пространственной сетки в процессе структурирования, что выражается в снижении жесткости отвержденного КМ в горячем состоянии и его теплостойкости (табл. 2).

Таким образом, для получения теплостойких образцов, по данным пластометрии, наиболее оптимальным соотношением БМИ: ОФС является 1: 0,1, а для переработки КМ выбран следующий режим прессования: 230—250°, а давление 30—35 МПа, время выдержки 3 мин на I мм толщины образца.

Известно, что подготовка пресс-материала вальцеванием оказывает значительное влияние на качество пресс-изделий [12, 13], поэтому было предпринято исследование по определению оптимального режима вальцевания КМ. Оценку проводили определением текучести КМ по Ратлигу [13]при 230° и времени выдержки 3 мин (рис. 3) и определением прочности образцов, отпрессованных на основе пресс-масс с различным временем вальцевания (табл. 3).

Как видно из рис. 3, максимальная текучесть КМ наблюдается при времени вальцевания 15 мин. Появление двух максимумов на кривой текучести обусловлено, по-видимому, протеканием механохимических реакций в процессе вальцевания. Подготовленные при этих условиях образцы хорошо формуются, поверхность образцов гладкая, без вздутий, трещин и сколов, при этом достигаются максимальные физико-механические показатели (табл. 3).

Результаты испытаний, представленные в табл. 3, подтверждают данные пластометрии о том, что температура отверждения должна быть не менее 230°. Так, образцы, отвержденные при 190°, имеют прочность ниже, чем образцы, отвержденные при 230° и требуют дополнительной термообработки для достижения того же уровня прочности, в то время как при

230° происходит полное отверждение образцов, и дополнительной термообработки не требуется. Определение механических характеристик КМ показало сочетание высокой прочности на удар и высокой теплостойкости полученных материалов.

Испытание диэлектрических свойств разработанного КМ показало, что формованные образцы имеют удельное объемное электрическое сопротивление 1,4-1016 Ом-см, удельное поверхностное электрическое сопротивление 1,5 -1016 Ом, тангенс угла диэлектрических потерь 0,013 и электрическую прочность 16,9 кВ/мм.

Таким образом, на основе БМИ и доступного ОФС разработано новое термореактивное связующее, отверждаемое по полимеризационному механизму, свойства которого в широких пределах можно регулировать соотношением сомономеров. На базе этого связующего получены стеклонаполненные композиционные материалы, исследованы режимы их переработки, свойства и установлено, что наибольшую теплостойкость п лучшие физико-механические свойства имеет материал на основе связующего с соотношением БМИ: ОФС=1: 0,1.

Олигофенолдисульфид получали по аналогии с методикой работы [15], полученный продукт характеризуется следующими показателями: т. каплепадения 125°, содержание свободного фенола 1,1%, содержание серы 31%, свободная сера отсутствовала, содержание гидроксильных групп 9%, М=450.

Связующее получали поликонденсацией БМИ и ОФС в смесителе с электрообогревом, имеющим два горизонтально расположенных месильных вала Z-образной формы. Поликонденсацию проводили при 140—150° и перемешивании в течение 25 мин. При этом компоненты загружали одновременно в виде механической смеси измельченных продуктов.

Композиционный материал получали гомогенизацией компонентов путем перемешивания в шаровой мельнице при 20° с последующей термомеханической пластификацией на фрикционных вальцах при температуре рабочего и холостого валков 140 и 160° соответственно.

Пластометрические исследования проводили на пластометре ППР-1 в интервале температур 180—280° при скорости сдвига 0,015 см-1 и удельном давлении 34 МПа. Физико-механические испытания образцов на основе отвержденного связующего проводили на приборе «Дин-Стат» (ГДР) на образцах размером 10X15X4 мм; образцов наполненной композиции — на приборах копр маятниковый марки БКМ-5 и контролер постоянных форм по Мартенсу марки ФВМ (ГДР), на образцах размером 10Х15Х Х120 мм. Термомеханические характеристики снимали на таблетках диаметром 4,5 и высотой 2 мм. Скорость подъема температуры 1 град/мин. ИК-спектры снимали на спектрофотометре UR-20 в таблетках с КВг. Гель-фракцию определяли экстракцией образцов в аппарате Сокслета кипящим 1,4-диоксаном в течение 10 ч.


ЛИТЕРАТУРА

1.Дорошенко Ю.Е., Саморядов А.В., Коршак В.В. В кн.: Итоги науки и техники. Химия и технология высокомолекулярных соединений. М.: ВИНИТИ, 1982, т. 17, с. 3.

2.Киселев Б.А. В кн.: Итоги науки и техники. Химия и технология высокомолекулярных соединений. М.: ВИНИТИ, 1977, т. 11, с. 176.

3.Сергеев В.А., Неделъкин В.И., Юферов Е.А., Ёрж Б.В., Комарова Л.И., Бахмутов В.И., Цыряпкин В.А. Высокомолек. соед. А, 1984, т. 26, № 9, с. 1936.

4.Takahashi A., Morishita Н., Itoh Y., Nishikawa A., Wasima М. Pat. 4592 (Japan).— Printed in Chem. Abstrs, 1980, v. 92, № 24, p. 199248q.

5.Crivello J.V.J. Polymer Sci. Polymer Cliem. Ed., 1976, v. 14, № 1, p. 159.

6.Сергеев В.А., Неделъкин В.И., Арустамян С.С, Ливен А. В., Ёрж Б.В. А. с. 745911 (СССР).- Опубл. в Б. И., 1980, № 25, с. 121.

7.Sergeev V.A., Nedel'kin V. 1. Acta Polymerica, 1982, В. 33, № 11, S. 647. ...

8.White J.E., Scaia M.D. Polymer, 1984, v. 25, № 6, p. 850.

9.СергеевВ.А., НеделъкинВ.И., ЮферовЕ.А., КолбинаН.А., Пугина 3.И., ЮфероваА.М., ГаврилинГ.Ф., ЁржБ.., ГоловачГ.И., ЮнниковВ.В. А. с. 1058976 (СССР).- Опубл. в Б. И., 1983, № 45, с. 89.

10. Bindra А.P., Elix J.A., Morris G.С. Austral. J. Chem., 1969, v. 22, № 11, p. 2483. гД. White J. E., Snider D.A., Scaia M.D. J. Polymer Sci. PolymerChem. Ed., 1984, v. 22, № 3, p. 589.

12. Канавец И.Ф. Отверждение термореактивных пресс-порошков и метод расчета минимальной выдержки при прессовании изделий из фенопластов. М.: Изд-во АН СССР, 1957.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно