Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Основы моделирования технологических систем

Тип Реферат
Предмет Коммуникации и связь
Просмотров
1613
Размер файла
0.99 Кб
Поделиться

Ознакомительный фрагмент работы:

Основы моделирования технологических систем

Министерство образования

Кафедра радиоэлектроники

Контрольная работа

по дисциплине

"Моделирование технологических систем"

Выполнила:

студентка гр.Р-01

Любименко Инга Петровна

Проверил:

К.т.н., доцент:

Бирюков В.А.

2009г.


Задача №1

На предприятии имеется листовой материал L представляющий прямоугольники размера 700×600 в количестве 50 штук. Требуется выкроить прямоугольные заготовки типов Δ1 (200´40), Δ2 (250´35), Δ3 (200´20). Для изготовления продукции I,II,III необходимы заготовки Δ1, Δ2, Δ3 в количестве соответственно: для продукции I - 2Δ1, 2Δ2, 4Δ3; для продукции II - 2Δ1, 1Δ2, 1Δ3; для продукции III - 1Δ1, 5Δ2, 4Δ3. Найти оптимальный раскрой а) для минимизации отходов при использовании всех листов и выпуске хотя бы одной единицы продукции каждого вида; б) для выпуска наибольшего (суммарного) количества продукции.

1) Общая площадь листа исходного материала 700×600=420000. Площади прямоугольных заготовок равны соответственно: 1-я заготовка – 200´400=80000; 2-я заготовка – 250´35=87500;3-я заготовка – 200´200=40000. Возможны следующие варианты раскроя с минимальным количеством отходов с листа (табл. 1 ).

Таблица 1 — Характеристики вариантов раскроя

Заготовка 1Заготовка 2Заготовка 3
площадькол-воΣ площадьплощадькол-воΣ площадьплощадькол-воΣ площадьСумма площадейотходы
80000432000087500004000014000036000060000
0043500000035000070000
0000936000036000060000
18000032625000034250077500
2160000187500312000036750052500
003262500312000038250037500

Варианты раскроя в порядке таблицы приведены на рисунках 1-3.


Рисунок 1 — Варианты раскроя 1 и 2

2) Сформулируем задачу математически сначала для минимизации отходов. Пусть x1 – число листов, израсходованных по первому варианту раскроя, x2 – соответственно по второму варианту; x3 – соответственно по третьему варианту; x4 –по четвертому варианту, и так далее для x5, x6. Минимум линейной функции, выражающей минимизацию отходов пока без учета лишних изготовленных заготовок запишется как


Рисунок 2 — Варианты раскроя 3 и 4

Рисунок 3 — Варианты раскроя 5 и 6

Здесь ci – отходы при i-том способе раскроя, их можно найти из таблицы. При этом необходимо сделать заготовок соответствующего уровня не меньше чем оговоренное в условии количество — по условию нам необходимо найти варианты раскроя, чтобы сделать не менее одной единицы продукции каждого вида. Так как для единицы первой продукции требуется 2Δ1, 2Δ2, 4Δ3; для продукции II аналогично 2Δ1, 1Δ2, 1Δ3; для продукции III - 1Δ1, 5Δ2, 4Δ3. Тогда суммарно требуется не менее 5Δ1, 8Δ2, 9Δ3. В первом варианте раскроя у нас 4 заготовки Δ1, во втором, третьем и шестом – 0, в четвертом – 1, в пятом – 2. Тогда по условию необходимо, чтобы . Аналогично для деталей Δ2 и Δ3:

.

По условию необходимо, чтобы использовались все листы, соответственно необходимо, чтобы . К тому же никакой способ раскроя не применяется к отрицательному количеству способов раскроя по вариантам: .

Таким образом, формулировка задачи без условия того, что лишние детали попадают в отходы:

Если учитывать то, что лишние детали попадают в отходы, то приходится вводить дополнительные переменные: - соответственно число заготовок 1-го, 2-го и третьего типов, изготовленных сверх использования для выпуска продукции; кроме того для второго этапа — составления плана выпуска продукции — необходимо ввести переменные , соответственно число единиц продукции I, II и III. При этом между ними существует взаимосвязь: количество лишних деталей Δ1 равна разности между произведенными деталями и деталями, используемыми для выпуска продукции:

Аналогично:

Переменные должны быть больше или равны 0; , по условию должны быть больше 1. Задача линейного программирования формируется следующим образом (рис.4).

Для ее решения воспользуемся табличным процессором MicrosoftExcel и его расширением Поиск решения. Для включения самого расширения необходимо выполнить действия, показанные на рис. 5.

Рисунок 4 — Математическая формулировка задачи


Рисунок 5 — Подключение надстройки Поиск решения в Excel

Вариант ввода исходных данных и формула вычисления функционала для наших условий показана на рис. 6. Последние 3 равенства записываются формулами относительно x7, x8, и x9, как показано на рис.7. Дальнейшая работа проводится с надстройкой "Поиск решения" (рис.8): функционал задаем как ячейку, которую необходимо максимизировать (рис.9); изменять будем ячейки x1-x6 (количество вариантов раскроя по каждому из способов) и x10-x12 (количество единиц продукции – ведь на один и тот же план раскроя можно вывести разные способы производства продукции) — рис.9. Добавим ограничения: переменные x1- x12 должны быть целые, переменные x1- x12 должны быть больше 0, количество использованных листов должно быть равно 50, количество единиц продукции должно быть больше или равно 1 (для х10, х11, х12), количество деталей должно быть больше заданного (рис.10).

Рисунок 6 — Ввод исходных данных в Excel


Рисунок 7 — Ввод равенств в Excel

Рисунок 8 — Вызов надстройки Поиск решения

Рисунок 9 — Ввод целевой функции и изменяемых ячеек

Рисунок 10 — Ввод ограничений на переменные

Рисунок 11 — Найденное решение


На рисунке 11 показано найденое надстройкой решение: 50 листов будут раскраиваться следующим способом: 12 листов по первому варианту раскроя, 1 по пятому, 37 по шестому. При этом получается 112 деталей Δ1, 243 детали Δ2, 109 деталей Δ3. Из этих деталей изготавливаются 15 единиц продукции I, 2 единицы продукции II, 16 единиц продукции III, 15 деталей Δ3 являются лишними. Суммарный отход — 2160000 квадратных единиц.

Для второй задачи — максимизации объема выпуска при тех же ограничениях мы изменяем целевой функционал с

на

.

изменится формула ячейки N2 и вид оптимизации целевой функции в модуле решения (рис. 12).

Рисунок 12 — Решение задачи максимизации выпуска


На рисунке 12 показано найденое надстройкой решение: 50 листов будут раскраиваться следующим способом: 29 листов по первому варианту раскроя, 7 — по второму, 1 - по четвертому, 2 - пятому, 11 - по шестому. При этом получается 36 деталей Δ1, 277 детали Δ2, 191 деталей Δ3. Из этих деталей изготавливаются 1 единица продукции I, 59 единиц продукции II, 1 единица продукции III, 1 деталей Δ3 является лишними. Суммарный выпуск — 61 единица продукции, при этом отход больше, чем в первой подзадаче.

Задача №2

По веерной схеме сборки изделия, представленной на рис. , и исходным данным, представленным в табл. :

1) определить общую продолжительность производственного цикла изготовления изделия;

2) определить критическое время и критический путь выполнения всего комплекса работ

3) определить начало производственного цикла изготовления изделия, если готовая продукция должна сойти с производства к 25 июня 2010 года.

Рисунок 13 — Веерная схема сборки

Таблица 2 — Характеристики вариантов раскроя

Частичные процессыДлительность цикла изготовления и сборки отдельных частей изделия по вариантам, дни
Сборка изделия 7
Сборка агрегата 7
Сборка узла 17
Сборка узла 210
Сборка узла 39
Сборка узла 410
Изготовление детали 119
Изготовление детали 1210
Изготовление детали 1310
Изготовление детали 218
Изготовление детали 227
Изготовление детали 238
Изготовление детали 317
Изготовление детали 329
Изготовление детали 338
Изготовление детали 416
Изготовление детали 4210
Изготовление детали 436
Изготовление детали 58
Изготовление детали 610

Пусть событие О — начало работ, А — окончание выполнения работ. Тогда веерная схема сборки с учетом календарных дней выполнения работ Д11-Д43, А1, У1-У4 и М может быть представлена графом с весами = дням выполнения соответствующих работ (см. рис.14)

Рисунок 14 — Граф сборочного процесса


Введем основные временные параметры сетевого графика работ.

Ранний срок свершения события (характеризует самый ранний срок завершения всех путей для вершины графа, в нее входящих. Этот показатель определяется "прямым ходом" по графу модели, начиная с начального события сети.) вычисляется по формуле

где – множество работ, заканчивающихся j- тым событием; – ранний срок свершения начального события работы

Поздний срок свершения события (характеризует самый поздний срок, после которого остается ровно столько времени, сколько требуется для завершения всех путей, следующих за этим событием. Этот показатель определяется "обратным ходом" по графу модели, начиная с завершающего события сети.)

где – множество работ, начинающихся i- тым событием; – поздний срок свершения конечного события работы

Расчеты ведутся по ходу графа (в первом случае сверху вниз по рис.14, во втором — снизу вверх по рис.14).

Резерв времени события показывает, на какой максимальный срок можно задержать наступление этого события, не вызывая при этом увеличения срока выполнения всего комплекса работ. Резервы времени для событий на критическом пути равны нулю, R(i) = 0.


Ранний срок начала работы , ранний срок окончания работы , поздний срок окончания работы , поздний срок начала работы

.

При расчета параметров вычисления отображают на графе с помощью кружка, разбитого на четыре сектора .

По определению нет никаких работ перед изготовлением деталей. Тогда по выше приведенным формулам высчитаем начало, конец и резерв по каждой из работ (см. рис. 15). Критический путь (не имеющий резервов) выделен.

Рисунок 15 — Сетевой план сборочного процесса в виде графа

Задача №3

Создать двухмерную оси симметричную модель трубы в теплоизоляции. Расчет нестационарный. Начальная температура 300 К. Температура внешней среды 300 К. Коэффициент теплоотдачи внутри трубы 40 Вт/м2К. Снаружи 5 Вт/(м2К). Коэффициент черноты 0.5. Температура теплоносителя 373К, и параметры трубы: 8 мм – внутренний радиус, 3мм – толщина трубы (сталь), 6мм – толщина теплоизоляции (стекловата). Длину трубы принять 1 м, условия на торцах адиабатические. Свойства материалов взять из справочника материалов.

При решении задачи выберем в программе Comsol шаблон для решения, как показано на рис. 16.

Рисунок 16 — Выбор шаблона задачи

В режиме создания геометрии нарисуем окружности и с пмощью инструмента вычтем из друг из друга по очереди, чтобы получить геометрию, показанную на рис.

Рисунок 17 — Созданная геометрия


Зададим свойства материала, граничные условия как показано в нижеприведенном отчете согласно задания.

Таблица 3 — Статистика сетки

Number of degrees of freedom5297
Number of mesh points1349
Number of elements2600
Triangular2600
Quadrilateral0
Number of boundary elements208
Number of vertex elements12
Minimum element quality0.842
Element area ratio0.216

Рисунок 18 — Конечно-элементная сетка

Таблица 4 — Граничные условия

Boundary1-2, 7, 123-4, 8, 115-6, 9-10
TypeHeat fluxHeat flux discontinuityTemperature
Heat transfer coefficient (h)W/(m2⋅K)54040
Problem-dependent constant (Const)W/(m2⋅K4)0.500
Ambient temperature (Tamb)K00373
Temperature (T0)K273.15273.15373

Таблица 5 — Свойства материалов

Subdomain123
Thermal conductivity (k)W/(m⋅K)k(T[1/K])[W/(m*K)] (Compoglass F)k(T[1/K])[W/(m*K)] (9 Ni steel (UNS K81340))k(T[1/K])[W/(m*K)] (Water, liquid)
Density (rho)kg/m3rho(T[1/K])[kg/m^3] (Compoglass F)rho(T[1/K])[kg/m^3] (9 Ni steel (UNS K81340))rho(T[1/K])[kg/m^3] (Water, liquid)
Heat capacity at constant pressure (C)J/(kg⋅K)C(T[1/K])[J/(kg*K)] (Compoglass F)C_solid_1(T[1/K])[J/(kg*K)] (Aluminum)Cp(T[1/K])[J/(kg*K)] (Water, liquid)
External temperature (Text)K000
Subdomain initial value123
Temperature (T)K273.15273.15373

Рисунок 19 — Решение задачи

Задача №4

К свободному краю консольно-закрепленной плоской прямоугольной пластины с отверстием приложена нагрузка F в точке, отмеченной красным. Материал и размеры даны в таблице. Провести моделирование пластины под нагрузкой, определить деформацию пластины и напряжение в материале. Вид на рисунке сверху.


Рисунок 20 — Созданная геометрия

Для конструкционного моделирования будем использовать пакет ABAQUS Student Edition, которой является лицензионным при ограничении в 1000 элементов сетки, что должно хватить для нашей задачи. Создадим эскиз и после задания толщины получим трехмерную модель в препроцессоре.

Зададим свойства материалу: плотность серебра 104920 кг/м3, модуль Юнга 71ГПа, коэффициент Пуассона 0,3. Создав сечение балки (section), присвоим материал нашей модели. В модуле Step задаются шаги анализа — у нас статическая задача (Static, General). В модуле Load вводится защемление и ограничение балки. При этом 770 Н направлены вниз. Решение показано на рис. 21.

Рисунок 21 — Решение задачи


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно