Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Минимизация холостых пробегов автотранспортного предприятия

Тип Реферат
Предмет Экономика
Просмотров
596
Размер файла
52 б
Поделиться

Ознакомительный фрагмент работы:

Минимизация холостых пробегов автотранспортного предприятия

С О Д Е Р Ж А Н И Е Р А Б ОТ Ы :

Страница

§1. Введение. 1

§2. Задание на курсовую работу. 2

§3. Транспортная задача линейного программирования. 3

п.3.1. Математическая постановка задачи. 3

п.3.2. Математическая запись задачи. 3

п.3.3. Метод совмещённых планов. 4

§4. Расчёт по методу совмещённых планов. 6

п.4.1. Расчёт оптимального плана возврата порожняка. 7

п.4.2. Расчёт индексов для занятых клеток. 8

п.4.2.1. Расчёт суммарного холостого пробега. 8

п.4.2.2. Расчёт индексов. 8

п.4.2.3. Определение потенциальных клеток. 9

п.4.2.4. Оптимизация плана. 9

п.4.3. Составление матрицы совмещённых планов. 10

§ 5. Прикрепление образованных маршрутов к АТП. 12

§6. Технологический расчёт маршрутов. 14

§7. Выводы. 16

Литература. 17

§ 1. ВВЕДЕНИЕ.

Маршрутизация перевозок – это прогрессивный, высокоэффективный способ организации транспортного процесса, позволяющий значительно сократить непроизводительные порожние пробеги подвижного состава, повысить качество обслуживания клиентуры и, в конечном счёте, сократить транспортные издержки самого автотранспортного предприятия.

Порожний пробег – это сумма холостых и нулевых пробегов. Величина порожних пробегов зависит от ряда факторов: от характера и направления грузопотоков; но главное влияние оказывает организация транспортного процесса и качество сменно-суточного планирования. Поэтому задачу ежедневного планирования можно сформулировать так: Сменно-суточное планирование перевозок грузов должно обеспечить выполнение заданного объёма перевозок с наименьшим порожним пробегом автомобилей.

Эта тема и будет являться основополагающей в данном курсовом проекте.

§ 2.ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ.

В автотранспортное предприятие поступила заявка на перевозку грузов на завтрашний день.

Требуется составить оптимальный сменно-суточный план перевозки грузов (маршруты движения автомобилей и сменные задания водителям), обеспечивающих вывозку заданных объёмов при минимальном суммарном пробеге автомобилей.

Исходные данные для решения транспортной задачи приведены в таблицах N No -1, 2, 3.

ТАБЛИЦА 1. Заявка на перевозку грузов (в тоннах).

Пункт

отправления

А1А1А1А2А3А4А4А5А5А6А6

Пункт

назначения

Б1Б7Б8Б2Б5Б3Б4Б1Б3Б5Б6

Объём

перевозок

189818181813654108545454

ТАБЛИЦА 2. Расстояния между пунктами отправления и назначения ( в км).

Пункт назначения

Пункт

отправления

Б1Б2Б3Б4Б5Б6Б7Б8АТП
А151784214153
А25138631731
А31241413114121012
А4167151513515122
А591136114110
А631538103215
АТП81716114699--

ТАБЛИЦА 3. Расчётные нормативы.

ПоказательОбозначениеЗначение
Грузоподъёмностьq5
Коэффициент использования грузоподъёмностиg0,9
Время в наряде * (в часах)Тн12,5
Среднетехническая скорость (в км/час)Vт24
Простой под погрузкой и выгрузкой на одну ездку с грузом (мин)tпв85

* Примечание. Допустимое отклонение ± 35 минут.

** Примечание. Используется автомобиль ЗИЛ-130 грузоподъёмностью 5 тонн.

§3. ТРАНСПОРТНАЯ ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ.

3.1. Математическая постановка задачи.

Рассмотрим и сформулируем в математической форме условие транспортной задачи. Потребителям Б12, ....,Бj,...., Бnтребуется груз в количествах b1, b2,....., bj,....., bn(т) единиц, который имеется или производится у поставщиков A1, A2,......, Ai,......, Amв количествах a1, a2,......., ai,......, am(т) единиц соответственно. Обозначим через qijобъём перевозок из i-ого пункта отправления в j-ый пункт назначения. Объём перевозок известен для всех пунктов ( задана заявка на перевозки грузов, см. таблицу 1.). Расстояние между поставщиками и потребителями известно (см. таблицу 2.)и составляет lij (км). В процессе выполнения перевозок в пунктах назначения Б12, ....,Бj,...., Бnпосле разгрузки автомобилей будет образовываться порожняк в количествах b`1, b`2,....., b`j,....., b`nкоторый надо направить в пункты A1, A2,......, Ai,......, Amв количествах a`1,a`2,…a`j,….a`m.

С методической точки для решения задачи удобней пользоваться понятием “ездка”. Поэтому за единицу измерения будет приниматься ездка автомобиля с грузом и без него.

В задаче будет выполняться условие:

mn

b`j = bj = Sqij , где j=1,2,......,n и a`i = ai = Sqij , где i=1,2,......,m ,

1 1

Дополнительным условием задачи является требование, чтобы за рабочую смену автомобиль направлялся не более, чем в четыре разных пункта отправления и в такое же количество пунктов назначения. Практически это означает, что при сменном задании с большим числом ездок необходимо составить кольцевой маршрут так, чтобы по нему можно было сделать несколько оборотов. Необходим план перевозок который обеспечит выполнение заданных объёмов с наименьшим холостым пробегом автомобиля.

3.2. Математическая запись задачи.

Обозначим через Xijколичество порожняка (в автомобиле - ездках) предназначенного к отправке из пункта разгрузки Бj в пункт погрузки Ai , тогда суммарный холостой пробег автомобиля из всех пунктов с наличием порожняка во все пункты его подачи будет иметь вид:

n m

SSXij* lij- min.{ 1 }

j=1 i=1

Условие полного удовлетворения спроса на порожняк каждого пункта отправления за счёт подачи его из разных пунктов с наличием порожняка выглядит так:

n

SXij = a`i , где i= 1,2,...,m. { 2 }

j=1

Весь порожняк из каждого пункта назначения должен быть подан в пункт отправления под погрузку, т.е. :

m

SXij =b`j , где j= 1,2,...,n. { 3 }

i=1

Очевидно, что количество автомобилей не может быть отрицательным числом, т.е. Xij > 0, при i= 1,2,...,m, j= 1,2,...,n. { 4 }

Таким образом, в математической форме транспортная задача формулируется так:

Определить значение переменных Xijминимизирующих линейную форму, выраженную {1}, при ограничениях, указанных в {2},{3},{4}. Необходимо равенство общей потребности получателей и наличия груза у поставщиков или отправителей:

m n

Sb`j= Sа`j{ 5 }

i=1 j=1

Это равенство является необходимым и достаточным условием для совместимости уравнений {2},{3}.

Цель решения выражается уравнением {1}: найти минимальный суммарный холостой пробег автомобилей. Задачу, выраженную формулами {1—5} принято называть задачей минимизации холостых пробегов автомобилей.

3.3. Метод совмещённых планов.

Для решения задачи разработан метод совмещённых планов. С его помощью она решается в три этапа.

На первом этапе решают задачу минимизации холостых пробегов автомобилей, в результате чего находят оптимальный план возврата порожняка под погрузку после разгрузки. Составление оптимального плана отражено в блок-схеме алгоритма метода потенциалов на рисунке 1.

На втором этапе из грузопотока ( линий перевозок ) заданных заявкой на перевозки и линий оптимального плана возврата порожняка, найденного на первом этапе, составляют схему кольцевых и маятниковых маршрутов движения автомобилей, в совокупности обеспечивающих минимум холостых пробегов автомобилей при выполнении заданных перевозок.

На третьем этапе найденные маршруты прикрепляют к АТП (автотранспортному предприятию), после чего разрабатывают сменно-суточные задания водителям по каждому маршруту.

Составление матрицы условий

Составление допустимого исходного плана

Подсчёт числа занятых клеток в матрице (N) и сравнение с (m+n-1)

N>m+n-1 N<m+n-1

Ликвидация лишних

занятых клеток

N=m+n-1

Создание недостающих

занятых клеток

Расчёт индексов

Проверка незанятых клеток на потенциальность

Построение цепочки возможных перемещений загрузок

Расчёт знаков “+” и “-“ по вершинам цепочки

Поиск наименьшей среди загрузок, отмеченных знаком “-“

Изменение загрузки на вершинах цепочки

Решение закончено: оптимальный план составлен

Потенциальных клеток нет

Рис. 1. Блок-схема алгоритма метода потенциалов.

§ 4. РАСЧЁТ ПО МЕТОДУ СОВМЕЩЁННЫХ ПЛАНОВ.

п.4.1.Расчёт оптимального плана возврата порожняка. Решение транспортной задачи начинается с разработки допустимого исходного плана, который разрабатывается в табличной форме. В матрицу условий (таблица 4) вводится дополнительный столбец и строка.

ТАБЛИЦА 4. Матрица условий.

Пункт назначения (образов. порожняка)
Пункт назначения

Вспом.

Индек.

Б1Б2Б3Б4Б5Б6Б7Б8Потребность в перевозках
Ui / Vi
А1 517842 14 15
А25 13863173
А31241413 1141210
А4167 15 151351512
А5911361141
А6315381032
Наличие порожняка

В строке записываются значения индексов Vj, а в столбце – значения индексов Ui .

Для дальнейших расчётов необходимо определить количество автомобиле-ездок, их находим по формуле :

Ze= Q/ q* g,

где Q – объём перевозок;

q – грузоподъёмность автомобиля (т);

g -- коэффициент использования грузоподъёмности.

Значения q и g возьмём из таблицы 3. Результаты вычисления занесём в таблицу 5.

ТАБЛИЦА 5. Расчёт ездок от объёма перевозки грузов (в тоннах).

Пункт

отправления

А1А1А1А2А3А4А4А5А5А6А6

Пункт

назначения

Б1Б7Б8Б2Б5Б3Б4Б1Б3Б5Б6

Объём

перевозок

189818181813654108545454
Количество автомобиле- ездок421818181881224121212

В правом верхнем углу клеток, представляющих собой реальные маршруты перевозок, указаны расстояния между соответствующими пунктами; условие Sbj= Sаi= 194 (ездки) выполняется.

ТАБЛИЦА 6. Допустимый исходный план.

Пункт назначения (образов. порожняка)
Пункт назначения

Вспом.

Индек.

Б1Б2Б3Б4Б5Б6Б7Б8Потребность в перевозках
Ui Vi
А1425178421814181578
А25181386317318
А3124141318114121018
А41678151215135151220
А524901121360114136
А6315312812103224
Наличие порожняка

66

18201230121818194/194

План разрабатывается способом минимального элемента по строке. Разработка производится в следующем порядке: сначала, планируются перевозки с первого склада, записывая их в соответствующие клетки первой строки, при этом удовлетворяются запросы потребителя, находящегося ближе всего к этому складу.

Планируем перевозки ближайшим из неудовлетворённых ещё потребителей, записывая соответствующие загрузки в клетки с наименьшими расстояниями. При соблюдении условий, описанных выше, удовлетворяя спрос и предложения пунктов отправления и потребления, происходит заполнение необходимых клеток; остаток по столбцу или строке сносится в клетку остатков, который впоследствии заносится в свободные не вычеркнутые клетки. При этом необходимо соблюдать условие, что количество заполненных клеток должно соответствовать числу m + n -1, где m — число пунктов отправления или погрузки; n – число пунктов погрузки.

В таблице 6 количество занятых клеток равно числу m + n -1=13; а в таблице 6 количество занятых клеток не равно этому числу 13 . Поэтому необходимо создать недостающие клетки, поставив нулевые загрузки в клетки А52 и А55.

Допустимый исходный план составлен, проверим его на оптимальность.

п.4.2.Расчёт индексов для занятых клеток.

п.4.2.1.Расчёт суммарного холостого пробега. Рассчитываем суммарный холостой пробег для допустимого исходного плана (таблица 6) с помощью формулы:

nm

SLx = S S Xij * lij , { 6 }

j=1 i=1

где SLx -- суммарный холостой пробег (км); Xij – количество порожняка, подаваемого между i-ым пунктом назначения, ездки; lij – расстояние от i-ого пункта отправления до j-ого пункта назначения (км).

п.4.2.2. Расчёт индексов. Следующим пунктом вычислений находим индексы для загруженных клеток :

Ui + Vj =lij Xij, { 7 }

Проверка допустимого плана на оптимальность заключается в соблюдении условий:

Ui + Vj =lij, для Xij>0 { 8 } и Ui + Vj =lij , для Xij=0 . { 9 }

Для определения индексов используются следующие правила:

а) индексы Uiзаписываются во вспомогательный столбец ;

б) индексы Vj записываются во вспомогательную строку;

в) индексы правой клетки вспомогательного столбца принимаются за нуль: U1=0.

Тогда из уравнения {6} можно выразить Uiи Vj .

Далее, рассчитаем индексы для таблицы 7 допустимого исходного плана по этим правилам.

ТАБЛИЦА 7. Допустимый исходный план ( предварительный вариант).

Пункт назначения (образов. порожняка)
Пункт назначения

Вспом.

Индек.

Б1Б2Б3Б4Б5Б6Б7Б8Потребность в перевозках
Ui Vi5-399-3-11415
А1042517281421814181578
А2165161813817619310114723+ 32818
А3141274714913101811491216101918
А46167815121513515512920
А542490112136701124191836
А61131317515313128121032222424
Наличие порожняка

66

18201230121818194/194

V1= A1Б1 – U1 = 5-0= 5; V7 = A1Б7 – U1 = 14-0=14; V8 = A1Б8 – U1= 15-0 =15

……………………….. ………………………….. …………………………

U5= A5Б1 – V1 = 9-5= 4; V3 = A5Б3 – U5 = 13-4= 9; U4= A4Б3 – V3 = 15-9 =6;

После расчёта индексов проверяем незанятые клетки на потенциальность.

п.4.2.3. Определение потенциальных клеток. Незанятые клетки, для которых получилось, что Ui + Vj >lij– называются потенциальными. Проверяем незанятые клетки на потенциальность. Проверка сводится к сравнению расстояний каждой незанятой клетки с суммой соответствующих ей индексов.

А1Б2 = u1 + v2 = 0-3 = -3 < ( l1-2=1);

А1Б3 = u1 + v3 = 0+9 = 9 > ( l­1-3­=7) -- 2 ;

....................................................................;

А2Б8 = u2 + v8 = 16+15= 31> ( l2-8=3)-- 28 ;

.....................................................................;

А6Б8 = u6 + v8 = 11+15= 26> ( l6-8=2)-- 24 .

По данным вычислений построим таблицу 7.

4.1.5. Оптимизация плана. Проверка допустимого плана на оптимальность заключается в соблюдении условий: {8} и {9}. Если данные условия не соблюдаются для клеток Xij =0, то значение потенциала отрицательно, что и определяет потенциальную клетку. Следует скорректировать допустимый план. Корректировка плана состоит в перемещении в потенциальную клетку с наименьшим по модулю потенциалом какую-нибудь загрузку. Перемещение производится при условии сохранения количества “+” и “-“ по строке и столбцу. Производя перемещение, следует повторить процесс определения потенциала до тех пор, пока условия {8} и {9} не будут соблюдены. Признаком оптимальности является отсутствие клеток, в которых сумма индексов будет больше расстояний.

Из наличия потенциальных клеток можно сделать вывод, что составленный план не является оптимальным. Выявленные клетки являются резервом улучшения плана, а превышение суммы индексов над расстоянием – потенциалом (в таблице 7 они размещены в нижнем правом углу клетки и выделены другим цветом). Улучшение неоптимального плана сводится к перемещению загрузки в потенциальную клетку матрицы.

Цепочку возможных перемещений определяют: для потенциальной клетки с наибольшим значением потенциала строят замкнутую цепочку из горизонтальных и вертикальных отрезков так, чтобы одна из её вершин находилась в данной клетке, а все остальные вершины в занятых клетках. Знаком “+” отмечают в цепочке её нечётные вершины, считая вершину в клетке с наибольшим потенциалом, а знаком “-“ – чётные вершины. Наименьшая загрузка в вершинах 18 ездок, уменьшая загрузку в вершинах со знаком “-“ и увеличивая её в вершинах со знаком “+” получают улучшенный план. Дальнейшие расчёты по его оптимизации производятся аналогично. Признаком оптимальности является отсутствие клеток, в которых сумма индексов будет больше расстояний.

В результате всех вычислений имеем конечный оптимальный план возврата порожняка в таблице 8.

ТАБЛИЦА 8. Оптимальный план возврата порожняка.

Пункт назначения (образов. порожняка)
Пункт назначения

Вспом.

Индек.

Б1Б2Б3Б4Б5Б6Б7Б8Потребность в перевозках
Ui / Vi5-1763-363
А106651127842141578
А2005138631718318
А35121841413114121018
А4816078151513125151220
А5-2911363011640136
А6-3315123810123224
Наличие порожняка

66

18201230121818194/194

После составления оптимального плана возврата порожняка произведём проверку клеток на потенциальность. Проверка сводится к сравнению расстояний каждой незанятой клетки с суммой соответствующих ей индексов.

А1Б2 = u1 + v2 = 0-1 = -1 < ( l1-2=1); ……; А2Б2 = u2 + v2 = 0-1 = -1 < ( l2-2=13);

А1Б4 = u1 + v4 = 0+6 = 6 < ( l­1-4­=8); ……; А2Б7 = u2 + v7 = 0+6 = 6 < ( l2-7=7);

.........................................................; ……; .…………………………………;

А3Б8 = u3 + v8 = 5+3 = 8 < ( l3-8=10); …..; А4Б8 = u4 + v8 = 8+3 = 11 < ( l4-8=12);

.........................................................; ….…; .…………………………………..;

А6Б1 = u6 + v1 = -3+5 = 2 ‡( l6-8=2); ……; А6Б8 = u6 + v8 = -3+3 = 0 < ( l6-8=2).

п.4.3. Составление матрицы совмещённых планов. Матрица совмещённых планов составляется после окончания разработки оптимального плана возврата порожняка. В таблицу 9 подставляются груженые ездки из таблицы 5. С целью лучшей наглядности изображения данные выполняются разными цветами.

ТАБЛИЦА 9. Матрица совмещенных планов.

Пункт назначенияБ1Б2Б3Б4Б5Б6Б7Б8
А166 425112 784218 1418 15
А20 5181386317183
А3121841413181141210
А41607881512 15131251512
А524 9112 13630116401
А631512312 812 101232

Вспомогательные и итоговые столбцы из матрицы удаляются, т.к. они не требуются для дальнейших расчётов.

Следующим этапом идёт расчёт маятниковых и кольцевых маршрутов. Маятниковые маршруты определяются в таблице 9 клетками с двойной загрузкой и рассчитываются по наименьшей загрузке. Таких клеток в матрице две: маршрут 1: А111 на 42 оборота и маршрут 2: А444 на 8 оборотов. После их образования происходит расчёт кольцевых маршрутов.

Кольцевой маршрут из двух звеньев ( две гружёные и две холостые ездки ) составляется путём образования прямоугольника из горизонтальных и вертикальных отрезков таким образом, что его чётные вершины должны лежать в клетках с порожними ездками, а нечётные вершины в клетках с гружёными клетками. Количество оборотов на маршруте определяется наименьшей из загрузок в клетке. В таблице 10 изображёны прямоугольники, обозначающие кольцевые маршруты.

ТАБЛИЦА 10. Таблица образования двухзвенных кольцевых маршрутов.

Пункт назначенияБ1Б2Б3Б4Б5Б6Б7Б8
А124 5112 784218 1418 15
А25181386317183
А3121841413181141210
А41671512 151312 51512
А524 9112 13630 116 41
А631512 312 812 1012 32

Маршрут 3: А17511 на 6 оборотов (наименьшему значению загрузки) и маршрут 4: А46644 на 12 оборотов. Не шедшие на образование маршрута грузовые и порожние ездки исключаются.

Следующим этапом расчётов рассматриваются возможности образования многозвенных маршрутов.

ТАБЛИЦА 11. Таблица образования трёхзвенного маршрута.

Пункт назначенияБ1Б2Б3Б4Б5Б6Б7Б8
А118 5112 7842121418 15
А25181386317183
А31218 41413181141210
А416715151351512
А518 9112 13630 1141
А6315312 81012 32

Маршрут 5: А1765531 на 12 оборотов.

ТАБЛИЦА 12. Таблица образования четырёхзвенного маршрута.

Пункт назначенияБ1Б2Б3Б4Б5Б6Б7Б8
А118 5178421418 15
А2518138631718 3
А31218 41413181141210
А416715151351512
А518 9113618 1141
А6315381032

Маршрут 6: А182235511 на 18 оборотов.

Когда все ездки в матрице совмещённых планов задействованы на различных маршрутах, тогда разработка маршрутов прекращается.

§ 5. ПРИКРЕПЛЕНИЕ ОБРАЗОВАННЫХ МАРШРУТОВ К АТП.

После расчётов и образования всех типов маршрутов производится прикрепление полученных маршрутов к автотранспортному предприятию, при этом решаются две основные задачи:

¨ определяется пункт погрузки, с которого следует начинать работу по кольцевым маршрутам;

¨ выбирается автотранспортное предприятие, техника которого будет выполнять данные маршруты.

Рекомендуется выбирать первый пункт погрузки и АПТ на кольцевом маршруте так, чтобы получить наименьший нулевой пробег автомобиля. Критерием правильности выбора первого пункта назначения служит прирост порожнего пробега. Меньший прирост порожнего пробега соответствует наилучшему варианту выполнения маршрута.

Прирост порожнего пробега вычисляется по формуле:

Dlk ij = lk i + ljk - lji, км , где { 10 }

l k i – расстояние от k-ого АТП до i-ого пункта погрузки;

l jk – расстояние от j-ого последнего пункта разгрузки до k-ого АТП;

lji – расстояние от последнего j-ого пункта разгрузки до i-ого первого пункта погрузки.

Маятниковые маршруты выполняются любым АТП от места погрузки.

Маршрут 1. АТП-А111-АТП на 42 оборота. Схема указана на рис 2.

5км А1 А4 15 км Б3

Б1 2км

3км

АТП АТП

Рис.2. Схема маятникового Рис. 3. Схема маятникового марш-

маршрута 1. рута 2.

Маятниковый маршрут 2 АТП-А434-АТП на 8 оборотов. Схема изображена на рисунке 3.

Произведём расчёт прироста порожнего пробега кольцевых для маршрутов по формуле {10}.

Кольцевой маршрут 3имеет четыре варианта привязки к АТП:

а) АТП-А1751-АТП для него Dlk ij = 3 + 8 - 5 = 6 (км);

б) АТП-А1157-АТП для него Dlk ij = 3 + 9 - 14 = -2 (км);

в) АТП-А5117-АТП для него Dlk ij = 10 + 9 - 4 = 15 (км);

г) АТП-А5711-АТП для него Dlk ij = 10 + 8 - 9 = 9 (км).

Следовательно, экономичным оказывается вариант б) его и примем за окончательный.

Б6

А1 5 км 5км

А4

3км Б1 2км

АТП 10км

АТП 9км 11км

Б7 Б4

4км А5 3км А6

а) б)

Рисунок 4 . Схема двухзвенного кольцевого маршрута: а) маршрут 3; б) маршрут 4.

Аналогично, для расчёта кольцевого двухзвенного маршрута 4 имеем экономичный вариант привязки АТП по маршруту движения АТП-А46644-АТП, с Dlk ij = -2 км, схема которого указана на рисунке 4-б.

Для кольцевого трёхзвенного маршрута 5 имеем экономичный маршрут привязки АТП по маршруту движения АТП-А135567-АТП сDlk ij =-2 км, схема которого изображена на рисунке 5.

Для кольцевого четырёхзвенного маршрута 6 имеем экономичный маршрут привязки АТП по маршруту движения АТП-А11553228- АТП сDlk ij =-3км, схема которого изображена на рисунке 6.

А2 3км Б8

13км 9км

А17км Б3А1 5км Б1

3км

АТП 3км

9км

13км Б2 АТП 9км

Б7

4км

А5 А5

А6 8км 1км 1 км

Б5 А3 11км Б5

Рис.5. Схема трёхзвенного кольцевого Рис.6. Схема четырёхзвенного коль-

маршрута 5 . цевого маршрута 6.

§ 6.ТЕХНОЛОГИЧЕСКИЙ РАСЧЁТ МАРШРУТОВ.

Рассчитаем один маятниковый и один кольцевой маршрут, а расчёты остальных маршрутов сведём в таблицу 13.

Маятниковый маршрут 1 АТП-А111-АТП.

а) Объём перевозок: Qm= 189 тонн;

б) Время оборота на маршруте: to= (2lге / Vт) + tпв = (2*5 / 24) + 1,4 = 1,82 (ч);

в) Время на нулевые пробеги: tн= ( lн1+ lн2 - lx)/Vт= (3 + 8 - 5) / 24 = 0,25 (ч);

г) Время нахождения на маршруте: Тм = Тн - tн = 750 - 15 = 735 (мин);

д) Число оборотов на маршруте: Zo = Tм / to = 735 / 109 = 6,74 » 6 (оборотов);

е) Пробег автомобиля с грузом: Lгр = lге*Zo = 5 * 6 = 30 (км);

ж)Пробег порожнего автомобиля: Lпор = lге * (Zo - 1) + lн1 + lн2= =5*5+3+8=38(км);

з) Общий пробег автомобиля за смену: Lo= Lгр + Lпор = 30+38 = 68 (км);

и) Коэффициент использования пробега за смену: b=Lгр/Lo= 30/68= 0,441;

к) Количество груза, перевозимого одним автомобилем: Qа = q*g*Zo= 5*0,9*6=

= 27(тонн);

л) Транспортная работа: Р = Qa * lге = 27 * 5 =135 (т*км);

м) Число потребных автомобилей для перевозки всего груза: Ам = Qм / Qa =

= 189/ 27 = 7 (а/м).

н) Количество не довезенного груза: Qост = Qм - Qa * Aм = 189 - 27 *7=189-189 = = 0 (тонн), т.е. весь груз будет вывезен.

Кольцевой маршрут 3 АТП-А1157-АТП на 6 оборотов.

а) Объём перевозок: Qм= 81тонн;

б) Длина маршрута: lм = l`ге + l`х + l``ге + l``х = 14 + 4 + 9 + 5 = 32 (км);

в) Время оборота на маршруте: to=(lм/Vт) + åtпв = (32 / 24) + 2 * 1,42 = 4,17 (ч);

г) Время на нулевые пробеги: tн=( l`н+ l``н2 - lx)/Vт=(3+9-14)/24 = 0,08 » 0,1 (ч);

д) Время нахождения на маршруте: Тм = Тн - tн = 750 - 6 = 744 = 12,4 (ч);

е) Число оборотов на маршруте: Zo = Tм / to = 12,4 / 4,17 = 2,98 » 3 (оборота);

ж) Фактическое время в наряде: Тн = Zo * to + tн = 3* 4,17 + 0,1= 12,6 (ч);

з) Пробег автомобиля с грузом: Lгр = (l`ге+ l``ге)*Zo = (5+4)* 3 = 27 (км);

и) Пробег порожнего автомобиля: Lпор= ( l`x + l``x )Zo + l`н+ l`н- l``x = =(9+14)*3+5+4-14=63 (км);

к) Общий пробег автомобиля за смену: Lo= Lгр+ Lпор= 27+ 63 = 90 (км);

л) Коэффициент использования пробега за смену: b= Lгр / Lo= 27/90= 0,3;

м) Количество груза, перевозимого одним автомобилем: Qа = q*g*Zo * Ze= 5*0,9* 3* 2= 27 (тонн);

н) Транспортная работа: Р = Qa *(l`ге + l``ге) = 27 * (5 + 4) = 243 (т*км);

o) Число потребных автомобилей для перевозки всего груза: Ам = Qм / Qa =

= 81/ 27= 3 (а/м).

п) Количество не довезенного груза: Qост=Qм-Qa*Aм=81- 27 *3 = 0 (тонн), т.е. весь груз будет вывезен.

Аналогичным образом производится расчёт всех составленных маятниковых и кольцевых маршрутов.

ТАБЛИЦА 14. Сводная таблица расчётов всех маршрутов.

Н а и м е н о в а н и е м а р ш р у т о в.
ПараметрыМаршрут 1Маршрут 2Маршрут 3Маршрут 4Маршрут 5Маршрут 6
Qм , т1893654108162324
lм , км103032334561
t , ч1,822,654,174,26,18,2
tн , ч0,250,1250,10,10,10,33
Тм , ч12,1512,3312,412,412,412,17
Zo , ч643321
Тн , ч11,1710,7312,612,712,38,53
Lгр, км306027242813
Lпор, км314963736848
Lo, км6113990979661
b ,0,4910,550,30,2470,2910,213
Qa , т271827272718
Р , т*км135270243648756864
Ам, шт.7234618
Qост , т000000

После расчёта все составленные маршруты получают сменно-суточный план перевозок, обеспечивающий заданный объём перевозок с минимальным объёмом автомобилей.

§ 7. ВЫВОДЫ.

В результате расчёта было представлено описание математической задачи и составлен план по методу потенциалов. Разработана матрица совмещённых планов и составлены маршруты перевозок груза. Обеспечен минимальный порожний пробег автомобиля. Произведён технологический расчёт, и сведён в таблицу, которая свидетельствует о том, что весь объём перевозок будет выполнен.

Литература:

1. Николин В.И. Автотранспортный процесс и оптимизация его элементов. М.: Транспорт, 1990

2. Боборыкин В.А. Математические методы решения транспортных задач. Л.: СЗПИ, 1986

3. Афанасьев Л.А., Островский И.В., Цукерберг С.М. Единая транспортная система и автомобильные перевозки. М.:Транспорт,1984

4. Геронимус Б.А. Экономико-математические методы в планировании на автомобильном транспорте. М.: Транспорт, 1982


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно