Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Метод наименьших квадратов для однофакторной линейной регрессии

Тип Реферат
Предмет Экономика
Просмотров
809
Размер файла
50 б
Поделиться

Ознакомительный фрагмент работы:

Метод наименьших квадратов для однофакторной линейной регрессии

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ

КОНТРОЛЬНАЯ РАБОТА

ПО ДИСЦИПЛИНЕ

«ЭКОНОМЕТРИКА»

2007


Задания к контрольной работе:

1. Метод наименьших квадратов для однофакторной линейной регрессии

2. Найти коэффициент эластичности для указанной модели в заданной точке X. Сделать экономический анализ.

Модель: Y = (2/X) + 5; X = 0;

3. Убыточность выращивания овощей в сельскохозяйственных предприятиях и уровни факторов (сбор овощей с 1 га, ц и затраты труда, человеко-часов на 1 ц), ее формирующих, характеризуются следующими данными за год:

№ района

Фактор

Уровень убыточности, %

Сбор овощей с 1 га, ц

Затраты труда, человеко-часов на 1 ц

1

93,2

2,3

8,8

2

65,9

26,8

39,4

3

44,6

22,8

26,2

4

18,7

56,6

78,8

5

64,6

16,4

34

6

25,6

26,5

47,6

7

47,2

26

43,7

8

48,2

12,4

23,6

9

64,1

10

19,9

10

30,3

41,7

50

11

28,4

47,9

63,1

12

47,8

32,4

44,2

13

101,3

20,2

11,2

14

31,4

39,6

52,8

15

67,6

18,4

20,2

Нелинейную зависимость принять


1. Метод наименьших квадратов для однофакторной линейной регрессии

Линейная регрессия находит широкое применение в эконометрике в виде четкой эконометрической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида:

Ŷ = а + bx или Ŷ = a + bx + ε;

Уравнение вида Ŷ = а + bx позволяет по заданным значениям фактора x иметь теоретические значения результативного признака, подставляя в него фактические значения фактора X. На графике теоретические значения представляют линию регрессии.

X


Рисунок 1 – Графическая оценка параметров линейной регрессии

Построение линейной регрессии сводится к оценке ее параметров – а и b. Оценки параметров линейной регрессии могут быть найдены разными методами. Можно обратится к полю корреляции и, выбрав на графике две точки, провести через них прямую линию. Далее по графику можно определить значения параметров. Параметр a определим как точку пересечения линии регрессии с осью OY, а параметр b оценим, исходя из угла наклона линии регрессии, как dy/dx, где dy – приращение результата y, а dx – приращение фактора x, т.е. Ŷ = а + bx.

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов(МНК).

МНК позволяет получить такие оценки параметров a и b, при которых сумма квадратов отклонений фактических значений результативного признака (y) от расчетных (теоретических) минимальна:

∑(Yi – Ŷ xi)2 → min

Иными словами, из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной.

εi = Yi – Ŷ xi.

следовательно ∑εi2 → min

Y


X

Рисунок 2 – Линия регрессии с минимальной дисперсией остатков

Чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю.

Обозначим ∑εi2 через S, тогда


S = ∑ (Y –Ŷ xi)2 =∑(Y-a-bx)2;

Дифференцируем данное выражение, решаем систему нормальных уравнений, получаем следующую формулу расчета оценки параметра b:

b = (ух – у•x)/(x2-x2).

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Например, если в функции издержек Ŷ = 3000 + 2x (где x – количество единиц продукции, у – издержки, тыс. грн.) с увеличением объема продукции на 1 ед. издержки производства возрастают в среднем на 2 тыс. грн., т.е. дополнительный прирост продукции на ед. потребует увеличения затрат в среднем на 2 тыс. грн.

Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследованиях.

2. Найти коэффициент эластичности для указанной модели в заданной точке X. Сделать экономический анализ.

Модель: Y = (2/X) + 5; X = 0;

Известно, что коэффициент эластичности показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1%. Формула расчета коэффициента эластичности:

Э = f′(x) X/Y,

где f′(x) – первая производная, характеризующая соотношение прироста результата и фактора для соответствующей формы связи.


Y = (2/X) + 5,

f′(x) = -2/x2;

Следовательно получим следующее математическое выражение

-2


2 + 5X

Э = =

При заданном значении X = 0 получим, что коэффициент эластичности равен Э = -1.

Допустим, что заданная функция Y = (2/X) + 5 определяет зависимость спроса от цены. В этом случае с ростом цены на 1% спрос снижается в среднем на 1%.

3. Убыточность выращивания овощей в сельскохозяйственных предприятиях и уровни факторов (сбор овощей с 1 га, ц и затраты труда, человеко-часов на 1 ц), ее формирующих, характеризуются следующими данными за год:

№ района

Фактор

Уровень убыточности, %

Сбор овощей с 1 га, ц

Затраты труда, человеко-часов на 1 ц

1

93,2

2,3

8,8

2

65,9

26,8

39,4

3

44,6

22,8

26,2

4

18,7

56,6

78,8

5

64,6

16,4

34

6

25,6

26,5

47,6

7

47,2

26

43,7

8

48,2

12,4

23,6

9

64,1

10

19,9

10

30,3

41,7

50

11

28,4

47,9

63,1

12

47,8

32,4

44,2

13

101,3

20,2

11,2

14

31,4

39,6

52,8

15

67,6

18,4

20,2

Нелинейную зависимость принять

Задание №1

Построим линейную зависимость показателя от первого фактора.

Обозначим: сбор овощей с 1 Га как X1, а уровень убыточности как Y.

Сбор овощей с 1 га, ц

Уровень убыточности, %

X1

Y

93,2

8,8

65,9

39,4

44,6

26,2

18,7

78,8

64,6

34

25,6

47,6

47,2

43,7

48,2

23,6

64,1

19,9

30,3

50

28,4

63,1

47,8

44,2

101,3

11,2

31,4

52,8

67,6

20,2

Найдем основные числовые характеристики.

1. Объем выборки n = 15 – суммарное число наблюдений.

2. Минимальное значение величины сбора овощей Х=18,7;

Максимальное значение сбора овощей Х=101,3;

Минимальное значение величины уровня убыточности Y=8,8;

Максимальное значение величины уровня убыточности Y=78,8;

3. Среднее значение:

X = ∑xi.

Среднее значение величины сбора овощей X = 778,9/15 = 51,926.

Среднее значение величины уровня убыточности Y = 563,5/15 = 37,566.

4. Дисперсия


D(X) = ∑ (Xi – X)2 = 588.35 D(Y) = ∑(Yi – Y)2 = 385,57.

5. Среднеквадратическое отклонение:

σx=√588.35 = 24.25, значит среднее сбора овощей в среднем от среднего значения составляет 24,25%.

σy=√385.17 = 19.63, значит среднее уровня убыточности всей сельскохозяйственной продукции в среднем от среднего значения составляет 19,63%.

Для начала нужно определить, связаны ли X1 и Y между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания). Точка с координатами (X, Y) = (51,926; 37,566) называется центром рассеяния. По виде корреляционного поля можно предположить, что зависимость между X1 и Y линейная (стр.). Для определения тесноты линейной связи найдем коэффициент корреляции:


∑(Xi – X) (Yi – Y)

σx σy

rxy = = 403.64 / 24.25 х 19,63 = 0,856;

Так как 0,6 ≤ ‌‌rxy ‌<0,9 то линейная связь между X1 и Y – достаточная. Попытаемся описать связь между X1 и Y зависимостью Y=b0+b1X. Параметры b0, b1 найдем по МНК.

b1 = rxy σx σy = -0,856 х 19,63. 24,25 = -0,696;

b0 = y – b1X = 37.566 + 0.696 х 51.92 = 73.70

Так как b1 < 0, то зависимость между X1 и Y обратная: с ростом сбора овощей уровень убыточности сельскохозяйственной продукции падает. Проверим значимость коэффициентов b0, b1.

Значимость коэффициентов b может быть проверена с помощью критерия Стьюдента:

tнабл = b0b0 = 73.70/6.53 = 11.28;

Значимость tнабл равна 0,00000007, т.е. 0,000007%. Так как это значение меньше 5%, то коэффициент b0 статистически значим.

tнабл = b1b1 = -0,696/0,1146 = -6,0716;

Значимость tнабл равна 0,000039, т.е. 0,0039%. Так как это значение меньше 5%, то коэффициент b1 статистически значим.

Получили модель связи сбора овощей и уровня убыточности сельскохозяйственной продукции:

Y = 73.70 – 0.6960X

После того, как была построена модель, необходимо проверить ее на адекватность.

Разброс данных, объясняемый регрессией SSR = ∑(ỹ-y)2 = 3990,5;

Остатки, необъясненный разброс SSЕ = ∑(ỹ-yi)2 = 1407,25;

Общий разброс данных SSY = ∑(yi-y)2 = 5397,85;

Для анализа общего качества оценной линейной регрессии найдем коэффициент детерминации: R2 = SSR/SSY = 0.7192;

Разброс данных объясняется линейной моделью на 72% и на 28% – случайными ошибками.

Вывод: Качество модели хорошее

Проверим с помощью критерия Фишера. Для проверки этой гипотезы сравниваются между собой величины:

MSR = SSR / K1 = 3990.5946/ K1 = 3990.5946. Отсюда K1 = 1.

MSE = SSE / K2 = 1407.25 / K2 = 108.25. Отсюда K2 = 13.

Находим наблюдаемое значение критерия Фишера Fнабл= MSR/MSE.

Значимость этого значения α = 0,00004, т.е. процент ошибки равен 0,004%. Так как это значение меньше 5%, то найденная модель считается адекватной.

Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза [18.7; 101.3]. Допустим это точка X1 = 50.

Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза Y(х = 50) = 73.7085 – 0.6960 х 50 = 38.9.

Найдем полуширину доверительного интервала в каждой точке выборки Xпр

Отсюда получим, что δ = 23,22.

В приведенной формуле:

σе = MSE = 108.25 = 10.40 – среднеквадратичное отклонение выборочных точек от линии регрессии.

ty = 2,16 – критическая точка распределения Стъюдента для надежности γ = 0,95 и K2 = 13 при n = 15.

SX = ∑(xi-x)2 или

SX = (n – 1) х D(X) = 14 х 588 х 39 = 8237,46;

Прогнозируемый доверительный интервал для любого X1 такой (ỹ – δ; ỹ + δ).

Совокупность доверительных интервалов для всех X1 из области прогнозов образует доверительную область, которая представляет область заключения между двумя гиперболами. Наиболее узкое место в точке X.

Прогноз для Х1 составит от 15,7 до 62,1 с гарантией 95%. То есть можно сказать, что при сборе овощей 50 центнеров с 1 га уровень убыточности сельскохозяйственной продукции можно спрогнозировать на уровне 15,7% – 62,1%.

Найдем эластичность Y = 73.70 – 0.6960X.

В нашем случае (для линейной модели) Ex = -0.6960X/(73.70 – 0.6960X).

В численном выражении это составит:

Eх=50 = -0,6960×50 / (73.70 – 0.6960×50) = – 0,8946;

Коэффициент эластичности показывает, что при изменении величины Х1 на 1% показатель Y уменьшается на 0,8946%.

Например, если Х1 = 50,5 (т.е. увеличился на 1%), то Y = 38.9 + 38.9×(-0,008946) = 38,5520006.

Проверим и Yх =50,5 = 73.70 – 0.6960X = 73.70 – 0.6960 × 50,50 = 38,552.

Задание №2

Построим нелинейную зависимость показателя от второго фактора.

Обозначим: затраты труда, человеко-часов на 1 ц – X2, а уровень убыточности как Y.

Затраты труда, человеко-часов на 1 ц

Уровень убыточности

X2

Y

2,3

8,8

26,8

39,4

22,8

26,2

56,6

78,8

16,4

34

26,5

47,6

26

43,7

12,4

23,6

10

19,9

41,7

50

47,9

63,1

32,4

44,2

20,2

11,2

39,6

52,8

18,4

20,2

Найдем основные числовые характеристики.

6. Объем выборки n = 15 – суммарное число наблюдений.

7. Минимальное значение величины трудоемкости Х2=2,3;

Максимальное значение трудоемкости Х2=56,6;

Минимальное значение величины уровня убыточности Y=8,8;

Максимальное значение величины уровня убыточности Y=78,8;

8. Среднее значение:

X = ∑xi.

Среднее значение величины трудоемкости X2 = 321,8/15 = 26,816.

Среднее значение величины уровня убыточности Y = 563,5/15 = 37,566.

9. Дисперсия


D(X) = ∑ (Xi – X)2 = 254,66 D(Y) = ∑(Yi – Y)2 = 385,56

10. Среднеквадратическое отклонение:

σx=√254,66 = 15,95 значит среднее трудоемкости в среднем от среднего значения составляет 15,95%.

σy=√385.17 = 19.63, значит среднее уровня убыточности всей сельскохозяйственной продукции в среднем от среднего значения составляет 19,63%.

Для начала нужно определить, связаны ли X1 и Y между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания). Точка с координатами (X, Y) = (26,816; 37,566) называется центром рассеяния. По виде корреляционного поля можно предположить, что зависимость между X1 и Y нелинейная (стр.), а именно имеет зависимость .

Путем преобразования нелинейную зависимость приведем к линейной V = b0 + b1U.

Для начала заменим переменные U = x, а V = ln(Y).

Найдем конкретные значения V и U (стр.), затем строим корреляционное поле (стр.) и находим результаты регрессивной статистики.

Для определения тесноты линейной связи V = b0 + b1U найдем коэффициент корреляции:


∑(Ui – U) (Vi – V)

σv σu

rvu = = 403.64 / 24.25 х 19,63 = 0,856;

Так как 0,6 ≤ ‌‌rxy ‌ <0,9 то линейная связь между X1 и Y – достаточная. Попытаемся описать связь между X1 и Y зависимостью Y=b0+b1X. Параметры b0, b1 найдем по МНК.

b1 = rvu σv σu = -0,856 х 19,63. 24,25 = -0,696;

b0 = y – b1X = 37.566 + 0.696 х 51.92 = 73.70


Так как b1 < 0, то зависимость между X1 и Y обратная: с ростом сбора овощей уровень убыточности сельскохозяйственной продукции падает. Проверим значимость коэффициентов b0, b1.

Значимость коэффициентов b может быть проверена с помощью критерия Стьюдента:

tнабл = b0b0 = 73.70/6.53 = 11.28;

Значимость tнабл равна 0,00000007, т.е. 0,000007%. Так как это значение меньше 5%, то коэффициент b0 статистически значим.

tнабл = b1b1 = -0,696/0,1146 = -6,0716;

Значимость tнабл равна 0,000039, т.е. 0,0039%. Так как это значение меньше 5%, то коэффициент b1 статистически значим.

Получили модель связи сбора овощей и уровня убыточности сельскохозяйственной продукции:

Y = 73.70 – 0.6960X

После того, как была построена модель, необходимо проверить ее на адекватность.

Разброс данных, объясняемый регрессией SSR = ∑(ỹ-y)2 = 3990,5;

Остатки, необъясненный разброс SSЕ = ∑(ỹ-yi)2 = 1407,25;

Общий разброс данных SSY = ∑(yi-y)2 = 5397,85;

Для анализа общего качества оценной линейной регрессии найдем коэффициент детерминации: R2 = SSR/SSY = 0.7192;

Разброс данных объясняется линейной моделью на 72% и на 28% – случайными ошибками.

Вывод: Качество модели хорошее

Проверим с помощью критерия Фишера. Для проверки этой гипотезы сравниваются между собой величины:

MSR = SSR / K1 = 3990.5946/ K1 = 3990.5946. Отсюда K1 = 1.

MSE = SSE / K2 = 1407.25 / K2 = 108.25. Отсюда K2 = 13.

Находим наблюдаемое значение критерия Фишера Fнабл= MSR/MSE.

Значимость этого значения α = 0,00004, т.е. процент ошибки равен 0,004%. Так как это значение меньше 5%, то найденная модель считается адекватной.

Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза [18.7; 101.3]. Допустим это точка X1 = 50.

Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза Y(х = 50) = 73.7085 – 0.6960 х 50 = 38.9.

Найдем полуширину доверительного интервала в каждой точке выборки Xпр

Отсюда получим, что δ = 23,20.

В приведенной формуле:

σе = MSE = 108.25 = 10.40 – среднеквадратичное отклонение выборочных точек от линии регрессии.

ty = 2,16 – критическая точка распределения Стъюдента для надежности γ = 0,95 и K2 = 13 при n = 15.

SX = ∑(xi-x)2 или

SX = (n – 1) х D(X) = 14 х 588 х 39 = 8237,46;

Прогнозируемый доверительный интервал для любого X1 такой (ỹ – δ; ỹ + δ).

Совокупность доверительных интервалов для всех X1 из области прогнозов образует доверительную область, которая представляет область заключения между двумя гиперболами. Наиболее узкое место в точке X.

Прогноз для Х1 составит от 15,7 до 62,1 с гарантией 95%. То есть можно сказать, что при сборе овощей 50 центнеров с 1 га уровень убыточности сельскохозяйственной продукции можно спрогнозировать на уровне 15,7% – 62,1%.

Найдем эластичность Y = 73.70 – 0.6960X.

В нашем случае (для линейной модели) Ex = -0.6960X/(73.70 – 0.6960X).

В численном выражении это составит:

Eх=50 = -0,6960×50 / (73.70 – 0.6960×50) = – 0,8946;

Коэффициент эластичности показывает, что при изменении величины Х1 на 1% показатель Y уменьшается на 0,8946%.

Например, если Х1 = 50,5 (т.е. увеличился на 1%), то Y = 38.9 + 38.9×(-0,008946) = 38,5520006.

Проверим и Yх =50,5 = 73.70 – 0.6960X = 73.70 – 0.6960 × 50,50 = 38,552.

Задание №3

Сбор овощей с 1 га, ц

Затраты труда, человеко-часов на 1 ц

Уровень убыточности

X1

X2

Y

93,2

2,3

8,8

65,9

26,8

39,4

44,6

22,8

26,2

18,7

56,6

78,8

64,6

16,4

34

25,6

26,5

47,6

47,2

26

43,7

48,2

12,4

23,6

64,1

10

19,9

30,3

41,7

50

28,4

47,9

63,1

47,8

32,4

44,2

101,3

20,2

11,2

31,4

39,6

52,8

67,6

18,4

20,2

Построим линейную зависимость показателя от двух факторов.

Обозначим: сбор овощей с 1 га как X1, затраты труда, человеко-часов на 1 ц – X2, а уровень убыточности как Y.

Найдем основные числовые характеристики.

1. Объем выборки n = 15 – суммарное число наблюдений

2. Минимальное значение величины сбора овощей Х1=18,7;

Максимальное значение сбора овощей Х1=101,3;

Минимальное значение величины трудоемкости Х2=2,3;

Максимальное значение трудоемкости Х2=56,6;

Минимальное значение величины уровня убыточности Y=8,8;

Максимальное значение величины уровня убыточности Y=78,8;

3. Среднее значение:


X = ∑xi.

Среднее значение величины сбора овощей X = 778,9/15 = 51,926.

Среднее значение величины трудоемкости X2 = 321,8/15 = 26,816.

Среднее значение величины уровня убыточности Y = 563,5/15 = 37,566.

4. Дисперсия


D(X) = ∑ (Xi – X)2 = 254,66 D(Y) = ∑(Yi – Y)2 = 385,56

5. Среднеквадратическое отклонение:

σx=√254,66 = 15,95 значит среднее трудоемкости в среднем от среднего значения составляет 15,95%.

σy=√385.17 = 19.63, значит среднее уровня убыточности всей сельскохозяйственной продукции в среднем от среднего значения составляет 19,63%.

Для начала нужно определить, связаны ли X1 и Y между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания). Точка с координатами (X, Y) = (26,816; 37,566) называется центром рассеяния. По виде корреляционного поля можно предположить, что зависимость между X1 и Y нелинейная (стр.), а именно имеет зависимость .

Путем преобразования нелинейную зависимость приведем к линейной V = b0 + b1U.

Для начала заменим переменные U = x, а V = ln(Y).

Найдем конкретные значения V и U (стр.), затем строим корреляционное поле (стр.) и находим результаты регрессивной статистики.

Для определения тесноты линейной связи V = b0 + b1U найдем коэффициент корреляции:


∑(Ui – U) (Vi – V)

σv σu

rvu = = 403.64 / 24.25 х 19,63 = 0,856;

Так как 0,6 ≤ ‌‌rxy ‌ <0,9 то линейная связь между X1 и Y – достаточная. Попытаемся описать связь между X1 и Y зависимостью Y=b0+b1X. Параметры b0, b1 найдем по МНК.

и1 = кчн σн. σч = -0,856 х 19,63. 24,25 = -0,696;

b0 = y – b1X = 37.566 + 0.696 х 51.92 = 73.70

Так как b1 < 0, то зависимость между X1 и Y обратная: с ростом сбора овощей уровень убыточности сельскохозяйственной продукции падает. Проверим значимость коэффициентов b0, b1.

Значимость коэффициентов b может быть проверена с помощью критерия Стьюдента:

tнабл = b0b0 = 73.70/6.53 = 11.28;


tнабл = b1b1 = -0,696/0,1146 = -6,0716;

Значимость tнабл равна 0,000039, т.е. 0,0039%. Так как это значение меньше 5%, то коэффициент b1 статистически значим.

Получили модель связи сбора овощей и уровня убыточности сельскохозяйственной продукции:

Y = 73.70 – 0.6960X

После того, как была построена модель, необходимо проверить ее на адекватность.

Разброс данных, объясняемый регрессией SSR = ∑(ỹ-y)2 = 3990,5;

Остатки, необъясненный разброс SSЕ = ∑(ỹ-yi)2 = 1407,25;

Общий разброс данных SSY = ∑(yi-y)2 = 5397,85;

Для анализа общего качества оценной линейной регрессии найдем коэффициент детерминации: R2 = SSR/SSY = 0.7192;

Разброс данных объясняется линейной моделью на 72% и на 28% – случайными ошибками.

Вывод: Качество модели хорошее

Проверим с помощью критерия Фишера. Для проверки этой гипотезы сравниваются между собой величины:

MSR = SSR / K1 = 3990.5946/ K1 = 3990.5946. Отсюда K1 = 1.

MSE = SSE / K2 = 1407.25 / K2 = 108.25. Отсюда K2 = 13.

Находим наблюдаемое значение критерия Фишера Fнабл= MSR/MSE.

Значимость этого значения α = 0,00004, т.е. процент ошибки равен 0,004%. Так как это значение меньше 5%, то найденная модель считается адекватной.

Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза [18.7; 101.3]. Допустим это точка X1 = 50.

Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза Y(х = 50) = 73.7085 – 0.6960 х 50 = 38.9.

Найдем полуширину доверительного интервала в каждой точке выборки Xпр


δ = σе ty 1 + + = 10.4 × 2.016 1 + +

Отсюда получим, что δ = 23,20.

В приведенной формуле:

σе = MSE = 108.25 = 10.40 – среднеквадратичное отклонение выборочных точек от линии регрессии.

ty = 2,16 – критическая точка распределения Стъюдента для надежности γ = 0,95 и K2 = 13 при n = 15.

SX = ∑(xi-x)2 или

SX = (n – 1) х D(X) = 14 х 588 х 39 = 8237,46;

Прогнозируемый доверительный интервал для любого X1 такой (ỹ – δ; ỹ + δ).

Совокупность доверительных интервалов для всех X1 из области прогнозов образует доверительную область, которая представляет область заключения между двумя гиперболами. Наиболее узкое место в точке X.

Прогноз для Х1 составит от 15,7 до 62,1 с гарантией 95%. То есть можно сказать, что при сборе овощей 50 центнеров с 1 га уровень убыточности сельскохозяйственной продукции можно спрогнозировать на уровне 15,7% – 62,1%.

Найдем эластичность Y = 73.70 – 0.6960X.

В нашем случае (для линейной модели) Ex = -0.6960X/(73.70 – 0.6960X).

В численном выражении это составит:

Eх=50 = -0,6960×50 / (73.70 – 0.6960×50) = – 0,8946;

Коэффициент эластичности показывает, что при изменении величины Х1 на 1% показатель Y уменьшается на 0,8946%.

Например, если Х1 = 50,5 (т.е. увеличился на 1%), то Y = 38.9 + 38.9×(-0,008946) = 38,5520006.

Проверим и Yх =50,5 = 73.70 – 0.6960X = 73.70 – 0.6960 × 50,50 = 38,552.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно