Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Экологичность и безопасность при эксплуатации котла с топочным устройством кипящего слоя работающим на высокозольном топливе

Тип Реферат
Предмет Безопасность жизнедеятельности
Просмотров
1131
Размер файла
28 б
Поделиться

Ознакомительный фрагмент работы:

Экологичность и безопасность при эксплуатации котла с топочным устройством кипящего слоя работающим на высокозольном топливе

Экологичность и безопасность при эксплуатации котла с топочным устройством кипящего слоя, работающим на высокозольном топливе

экологичность котел оксид сера

Травкин Антон Сергеевич

2009

1. Введение

При рассмотрении проекта котла или другой ВТУ необходимо рассматривать его экономичность, безопасность и безаварийность производственных процессов. Предусмотренные политикой государства в области охраны труда и экологии законы, «О промышленной безопасности опасных производственных объектов» от 21.07.1997 года, законом «О рациональной безопасности населения» от 09.01.1996 года, законом «Об охране окружающей природной среды» от 19.12.1991 года, направлены в первую очередь на оценку опасностей и предотвращение их.

Оценка опасностей различных производственных объектов заключается в определении возможных чрезвычайных ситуаций, разрушительных воздействий пожаров и взрывов на эти объекты, а также воздействия этих факторов на людей. Происходит оценка этих опасностей на стадии проектирования на основе нормативных требований, разработанных с учётом наихудшего варианта чрезвычайной ситуации.

Оценка экологичности происходит по нормативным документам в зависимости от воздействия объекта на окружающую среду. К примеру, в случаи рассмотрения котла таким воздействием будет выбросы вредных веществ в атмосферу.


2. Поступление вредных веществ в атмосферу при сжигании в низкотемпературном слое высокозольного топлива. И пути их снижения

При традиционных методах сжигания твёрдого топлива наиболее массовыми вредными выбросами являются летучая зола с недогоревшими частицами топлива, оксиды серы, углерода и азота. Наиболее опасно сочетание в продуктах сгорания диоксида азота и серы. Кроме того, сжиганию углей может сопутствовать поступление в атмосферу микроэлементов, а также полициклических ароматических углеводородов, сажи, естественных радионуклидов и т.д.[1,2], которые в данной работе не рассматриваются, так как используется метод сжигания в низкотемпературном кипящем слое. В этом случае может быть подобранна оптимальная комбинация температурного уровня процесса, коэффициента избытка воздуха и времени пребывания частиц в слое, позволяющая избавиться от значительной части из выбросов. Потому далее рассматриваем только выбросы оксидов азота, серы и углерода.

2.1 Расчёт выбросов оксидов азота в атмосферу и методы их снижения

Количество оксидов азота (в пересчёте на NO2), выбрасываемых в единицу времени (т/год, г/с), рассчитываем по формуле[3]:

МNO2 = 0.001*B*Qнр*KNO2(1-β), где

В – расход топлива за рассматриваемый период времени (В = 520 г/с)

Qнр – теплота сгорания топлива (16,9 МДж)

КNO2 – параметр, характеризующий количество оксидов азота, образующихся на 1 ГДж тепла (0,027 кг/ГДж)

β – коэффициент, учитывающий степень снижения выбросов в результате применения технических решений.

МNO2 = 0,001*520*16,9*0,027 = 0,24 г/с

Эффективное снижение выбросов оксидов азота (в сравнении с традиционными методами сжигания) достигается при сжигании топлива в кипящем слое при температурах слоя 950 0С. Метод дозированного впрыска воды в зону горения [1,2] является, малозатратным методом, предназначенным для подавления образования оксидов азота в топочной камере.

При этом сохраняется высокая надёжность и экономичность работы установки в случаи оптимального количества впрыска воды (около 7% от расхода топлива). Применение низкотемпературного кипящего слоя для котлов не только позволяет использовать не обогащенный уголь, но и высокозольные угли и углеотходы, позволяет уменьшить габариты топочной камеры и снизить поступление в атмосферу выбросы оксидов азота в несколько раз по сравнению с традиционными методами сжигания топлив.

2.2 Расчёт выбросов оксидов серы в атмосферу и методы их снижения

Количество оксидов серы, выбрасываемых в атмосферу, рассчитаем по формуле[3]:

МSO2 = 0.02*B*SP*(1-η'SO2)(1-η''SO2), где

B – расход топлива, г/с;

SP – содержание серы в топливе на рабочую массу, %;

η'SO2 – доля оксидов серы, связываемых летучей золой топлива ( при сжигании углей принимаем значение 0.1);

η''SO2 – доля оксидов серы, оседающих в золоуловителе (принимаем равной нулю);

МSO2 = 0,02*520*0,6*(1-0,1) = 5,62 г/с

Образование SO2 и SO3 при сжигании зависит от содержания серы в топливе. Значительная часть серы твёрдых топлив сосредоточенна в органическом веществе, а также входит в состав горючих (сульфидных) и негорючих (сульфатных) минеральных веществ. В процессе горения все эти виды серы могут стать источниками образования оксидов серы. Поступление SO2 и SO3 в окружающую среду приводит к образованию серной кислоты (при реакции обоих этих вещества с атмосферной влагой).

Обеспечить снижение выбросов оксидов серы можно использую достаточно простые методы.

Метод подачи в кипящий слой дроблёного известняка [1,2], который связывает диоксиды серы в твёрдое нетоксичное вещество – сульфат кальция, который уже легко можно отделить от газов:

CaCO3 = CaO + CO2

CaO + SO2 + 0.5O2 = CaSO4

Данный метод известен и его эффективность доказана многочисленным применением и практикой.

В температурном диапазоне слоя от 800 до 950 0С достигается максимальное связывание серы. Это подтверждается результатами многих исследований. Степень связывания серы данным способом зависит от многих факторов: мольного соотношения Ca/S, качества (активности) известняка, размеров его частиц (так например степень превращения крупнодроблёного известняка в сульфат кальция не превышает 30%[1,2]), пористости, размеров пор. Так же для обеспечения эффективности метода необходимо обеспечить достаточное время пребывания его в слое. Тип поровой структуры (образующийся при обжиге) является во многом определяющим при выборе нужного известняка.

Второй метод разработан в Институте Горючих Ископаемых (ИГИ) и связан с осуществление процесса сжигания в кипящем слое сернистых топлив с одновременным удалением из слоя серного колчедана. Подтверждением целесообразности такого метода может служить ряд работ [2].

Третий метод, разработанный так же ИГИ, является улучшением первого. Основан он на подачу в слой водоизвестняковой смеси. Такой метод позволяет стабилизировать температуру в слое, уменьшить выбросы оксидов азота, снизить возможный унос пыли из слоя, повысить степень превращения в сульфат кальция. Твёрдый сульфат кальция имеет склонность перекрывать входную часть пор частиц известняка и препятствовать полному его использованию. Применение таких методов позволяет снизить выбросы оксидов азота, в топках с кипящим слоем, на 90% по сравнению со слоевым методом сжигания.

2.3 Выбросы оксидов углерода в атмосферу и методы их снижения

Оксид углерода – горючее вещество.

Средством устранения оксидов углерода из выбросов при сжигании твёрдых топлив является правильный подбор соотношения между топливом и окислителем – коэффициент избытка воздуха для данной технологии сжигания, ликвидация локальных избытков углерода, плохого смешения его с окислителем, неблагоприятных температурных условий в кипящем слое. Так при технологии кипящего слоя, с погружёнными поверхностями нагрева непосредственно в слой, установлено, что оксид углерода исчезает из продуктов сгорания при довольно высоких значениях коэффициента избытка воздуха (α=1,3). Образовавшийся в слое оксид углерода не догорал в надслоевом пространстве вследствие снижения там температуры из-за отвода тепла ещё в зоне горения. Используемая в данной работе технология низкотемпературного кипящего слоя не предусматривает совмещения зоны горения и зоны теплосъемных поверхностей. Используемый коэффициент избытка воздуха (α=1,2) предотвращает появление оксидов углерода в продуктах сгорания.


3. Тепловое излечение

Персонал ВТУ не подвергается прямой опасности для организма при соблюдении техники безопасности, санитарных норм и порядка проведения технологического процесса.

Перегрев организма возможен из-за неудовлетворительного состояния тепловой изоляции, плохой вентиляции рабочего помещения. Способствует этому плотная, рабочая одежда, высокая влажность и недостаток питьевой воды. Вследствие перегрева организма может наступить тепловой удар и расстройство центральной нервной системы.

При перегревании появляются головные боли, сонливость, головокружение, шум в ушах, повышение температуры, боли в конечностях, а затем потеря сознания. Когда появляются симптомы перегрева или тепловой удар, нужно вывести или вынести потерпевшего на свежий воздух, обеспечить свободное дыхание.

Нагрев атмосферы цеха при работе ВТУ полностью устранить невозможно, но его необходимо свести к минимуму.

Интенсивность инфракрасного излучения на рабочих местах измеряется на высоте 0,5-1,5м от пола в направлении максимального излучения от каждого источника[4]. По СН 4088-86 инфракрасное излучение делиться на три области: А (коротковолновое) – допустимая плотность потока 100 Вт/м2; В (длинноволновое) – допустимая плотность потока 120 Вт/м2; С (длинноволновое) – допустимая плотность потока 150 Вт/м2.


4. Защита от воздействия электрического тока на организм человека

Электрическое оборудование цеха также представляют опасность для персонала, так как вследствие неисправности может возникнуть электрический контакт между токоведущими частями и другими металлическими элементами котла, с которыми в процессе эксплуатации может соприкасаться персонал. Ток, проходящий через тело человека, может вызвать повреждения: термические (ожоги, перегрев кровеносных сосудов), электролитическое (разрушение крови, лимфы и тканей), биологическое (судороги, полное прекращение и дыхания) и механическое (переломы, вывихи).

Для защиты человека при прикосновении к металлическим частям установки, оказавшейся под напряжением, применяют защитное заземление и зануление. Также основными мерами защиты от воздействия электрического тока являются:

защита от прикосновения к токоведущем частям (недоступное расположение, специальная изоляция);

индивидуальные защитные средства и инструменты (изолированные и измерительные штанги, клещи).

Электротехнические защитные средства изготавливаются из резины, фарфора и других изолирующих материалов с устойчивой диэлектрической характеристикой[4].


5. Пожарная безопасность

Размеры материального ущерба, причиняемые пожарами в зависят от того, насколько своевременно и эффективно приняты меры по борьбе с пожарами. Особо сильные и разрушительные пожары происходят, как правило, из-за запоздалого тушения. Считается, что критическое время для прибытия пожарной команды и начала тушения составляет 15-20 минут. Для многих объектов столь длительное время слишком велико. Поэтому важным направлением в борьбе с пожарами является оснащение объекта не только системами оповещения о возгорании, но и огнетушителями, автоматическими установками пожаротушения, которые выступают в роли «первой пожарной помощи» [5,6].

В настоящее время различают следующие автоматические системы пожаротушения:

установки пенного пожаротушения;

установки газового и аэрозольного тушения;

установки парового тушения;

установки пожаротушения огнеопасных жидкостей перемешиванием;

установки водяного пожаротушения.

При внимательном подходе к пожаротушению, достаточном числе огнетушителей, правильно спроектированных и установленных системах пожарной сигнализации и пожаротушения, степень безопасности объекта достаточно высока.

Для нашего проекта рекомендуем использовать установку газового и аэрозольного пожаротушения, которые приминаются в тех случаях, когда тушение пожаров другими средствами неэффективно или недопустимо (например, множество металлических конструкций на объекте и оборудование под напряжением). Например, можно использовать огнетушащее средство, которые при распылении резко охлаждают зону горения. Так газообразный азот чаще всего применяют в комбинированных составах, он также служит для транспортирования фреона и порошковых составов к очагу пожара (так как для тушения пожара только им необходимо заполнить до 60% объёма помещения, для чего требуется слишком много азота). Или же например, огнетушащей состав «3,5», который представляет собой смесь 30% сжиженной углекислоты и 70% бромистого этила, пары которого очень интенсивно тормозят процесс горения. Из 1л. жидкого состава при нормальных условиях образуется 153л углекислого газа и 144л паров бромэтила. Состав в 3,5 раза эффективнее углекислоты (отсюда и название). Удельный расход – 0,25 кг/м3.

Однако наряду с преимуществами способ тушения газовыми средствами имеет свои недостатки. К таким недостаткам можно отнести вредность газов для здоровья персонала, поэтому при установки таких систем тушения необходимо обеспечить меры безопасности и предупредительную сигнализацию[5,6].

Стоит заметить, что соблюдение правил пожарной безопасности, технологической последовательности процессов, своевременного технического обслуживания установки сводит риск возникновения пожара к минимальному значению.


Список литературы

1. Беляев А.А., Сжигание низкокалорийных высокозольных углей в кипящем слое. М.:Недра,1984.

2. Беляев А.А Совершенствование технологии сжигания низкозольных твёрдых топлив во взвешенном слое. Дисс. на соиск. учён, степени д.т.н.: Институт Горючих Ископаемых. М., 1997.

3. Методические указания по расчёту выбросов загрязняющих веществ при сжигании топлива в котлах производительностью до 30т/час – Москва, Гидромеоиздат, 1996 – 352с.

4. Павлова Г.И. Курс лекций по «Безопасности труда в энергетике».

5. Вопросы охраны труда при работе на стационарных криогенных установках. Каралюнец А.В., Муравых А.И., Павлова А.И. под ред. Шугаева В.А. – М.: МЭИ 1989-59с.

6. Методические указания по дипломному проектированию. Проектирование автоматических установок пожаротушения. Лебедев П.А./ Под ред. Новикова С.Г. – М.: МЭИ 1989-32с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
152761
рейтинг
icon
3181
работ сдано
icon
1378
отзывов
avatar
Математика
Физика
История
icon
148352
рейтинг
icon
5974
работ сдано
icon
2702
отзывов
avatar
Химия
Экономика
Биология
icon
105024
рейтинг
icon
2092
работ сдано
icon
1305
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
59 245 оценок star star star star star
среднее 4.9 из 5
КИУ (ИЭУП)
Извините что так долго, препод долго смотрел работу 😔а так все по выше у уровню.
star star star star star
КрасГМУ
Сделал всю работу быстро, досрочно, текст грамотный, качественный. Автору спасибо.
star star star star star
Витте
Отличная работа!Выполнена на день раньше срока! Получила 90 балов за неё!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

начальная школа

Контрольная, Окружающий мир

Срок сдачи к 22 мар.

только что

Выполнить комплексная контрольная работа по Управление техносферной безопасностью.М-04369

Контрольная, безопасность жизнедеятельности

Срок сдачи к 21 мар.

только что

Выполнить курсовую работу

Курсовая, Прикладная информатика

Срок сдачи к 6 апр.

1 минуту назад

Сделать 4 задания, на выполнение 1 час

Онлайн-помощь, Теория горения и взрыва

Срок сдачи к 17 мар.

1 минуту назад

Анализ микро среды и конкурентоспособности

Контрольная, Стратегическое планирование

Срок сдачи к 21 мар.

1 минуту назад

написать конспект урока

Другое, методика обучения биологии

Срок сдачи к 16 мар.

1 минуту назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени: 16 марта 2025 г. 16:22

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Press the down arrow key to interact with the calendar and select a date. Press the question mark key to get the keyboard shortcuts for changing dates.

Файлы (при наличии)

    это быстро и бесплатно