Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Вычисление термодинамических функций индивидуального вещества H2 расчет константы равновесия реакции

Тип Реферат
Предмет Химия
Просмотров
739
Размер файла
170 б
Поделиться

Ознакомительный фрагмент работы:

Вычисление термодинамических функций индивидуального вещества H2 расчет константы равновесия реакции

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Воронежский государственный технический университет

Физико-технический факультет

Кафедра физики, химии и технологии литейных процессов

КУРСОВАЯ РАБОТА

по дисциплине «Физическая химия»

Тема: Вычисление термодинамических функций индивидуального вещества H2, расчет константы равновесия реакции 2MgOкондграф↔ 2Mgконд+СО2.

Построение и анализ диаграммы состояния двухкомпонентной системы LaSb.

Выполнил студент ЛП – 061 ____X_HACKER

группа подпись инициалы, фамилия

Руководитель А.Н. Корнеева

подпись инициалы, фамилия

Нормоконтроль А.Н. Корнеева

подпись инициалы, фамилия

Защищена________________Оценка______________________

2008 г


Воронежский государственный технический университет
Кафедра физики, химии и технологии литейных процессов

ЗАДАНИЕ

На курсовую работу по дисциплине

«Физическая химия»

Специальность 150104: «Литейное производство черных и цветных металлов»

Тема работы: Вычисление термодинамических функций заданного вещества Hи константы равновесия заданной реакции

2MgOкондграф 2Mgконд+СО2

Построение и анализ диаграммы двойной системы LaSb.


Содержание расчетно-пояснительной записки:

1 Вычисление термодинамических функций.

1.1 Вычисление термодинамических функций H0(T)-H0(0), S0(T), Ф0(Т), G0(T)-G0(0) для заданного веществаHв интервале температур 100-500К.

1.2 Описание физических и химических свойств веществаH, его применение.

1.3 Расчет константы равновесия реакции 2MgOкондграф 2Mgконд+СО2в интервале температур 1400 - 2400К, двумя способами и с помощью применения приведенной энергии Гиббса.

2 Построение и исследование диаграммы состояния двойной системы LaSb.

2.1 Построение и исследование диаграммы состояния LaSbпо следующим пунктам:

2.1.1 Построить диаграмму состояния в LaSbмасс.д. и молек.д., определить тип диаграммы состояния, дать фазовый состав всех ее областей.

2.1.2 Установить формулы химических соединений, если таковые имеются на заданной диаграмме состояния LaSb.

2.1.3 Указать температуру начала и конца кристаллизации для расплава системы, LaSbсодержащей 0,6 ат.д. Sb.

2.1.4 Определить природу и состав первых выпавших кристаллов из расплава, содержащего, 0,6 ат.д. Sb, а так же состав последних капель этого расплава.

2.1.5 По правилу рычага для системы LaSbсодержащей 0,6 ат.д. Sb, при температуре 1200oC, определить массы равновесных фаз, если было взято 50 г исходного сплава.

2.1.6 Найти число степеней свободы, в точках, соответствующих следующему составу системы и температуре:

Состав 0,4 ат.д. Sb, температура 1690oC

Состав 0,2 ат.д. Sb, температура 800oC

Состав 0.8 ат.д. Sb, температура 1400oC

2.1.7 Нарисовать кривую охлаждения для системы, содержащей, 0,6 ат.д. Sb, и дать полное описание процесса охлаждения.

Руководитель работы:

Корнеева А.Н._________________________

Исполнитель:

Щербаков А.Е.________________________

Дата выдачи задания_____________________

Дата сдачи курсовой работы_____________

Дата защиты __________________________


СОДЕРЖАНИЕ

Задание

Содержание

1. Вычисление термодинамических функций

1.1. Вычисление термодинамических функций H0(T) - H0(0), S0(T), Ф0(T),

G0(T) - G0(0) для заданного вещества Н2 в интервале температур

100-500К.

1.2. Описание физических, химических свойств вещества H2 и его

применение.

1.3. Расчет константы равновесия реакции

2MgOкондграф↔ 2Mgконд+СО2 в интервале температур 1400-2400К двумя

способами: с помощью энтропии и приведенной энергии Гиббса.

2. Построение и исследование диаграммы состояния двухкомпонентной

Системы La—Sb.

2.1. Построение и исследование диаграммы состояния La—Sbпо

следующим пунктам:

2.1.1. Построить диаграмму состояния La—Sbв масс. д. и молек. д.,

определить тип диаграммы состояния, дать фазовый состав всех её областей.

2.1.2.Установить формулы химических соединений, если таковые

имеются на заданной диаграмме состояния La—Sb.

2.1.3. Указать температуру начала и конца кристаллизации

для расплава системыLa—Sb, содержащей 0.6 ат. д. Sb.

2.1.4. Определить природу и состав первых выпавших кристаллов из

расплава, содержащего 0.6 ат Sb ат. д., а также состав последних

капель этого расплава.

2.1.5. По правилу рычага для системы La—Sb, содержащей 0.6 ат. д. Sb

при температуре 12000C, определить массы равновесных фаз,

если было взято 50 г исходного сплава.

2.1.6. Нахождение количества степеней свободы в точках,

соответствующих следующему составу системы и температуре:

Состав 0,4 ат.д. Sb, температура 1690oC

Состав 0,2 ат.д. Sb, температура 800oC

Состав 0.8 ат.д. Sb, температура 1400oC

2.1.7. Кривая охлаждения для системы, содержащей 0.6 ат.д Sb, и полное описание процесса охлаждения.

Приложение А

Приложение Б

Приложение В

Приложение Г

Приложение Д

Список литературы

1. ВЫЧИСЛЕНИЕ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ.

1.1 Для вычисления термодинамических функций H°(T)-H°(0), S°(T), Ф°(Т), G°(Т)-G°(0) заданного вещества H, в интервале температур 100-500 К с шагом 25 К используем табличные значения термодинамических функций Ср(Т), S0(100) и H0(100)-H0(0), приведенные в источнике [1]. Расчет термодинамических функций при температурах 100, 200, 300, 400, 500 К производим по формулам из источника [2]:

а) изменение энтальпии

(1)

б) изменение энтропии (2)

в) изменение энергии Гиббса (3)

г) изменение приведенной энергии Гиббса:

, (4)

где:

— высокотемпературная составляющая стандартной энтальпии;

— значение стандартной теплоёмкости ;

— стандартная энтропия индивидуального вещества при указанной температуре;

— приведённая энергия Гиббса;

— разность стандартных энергий Гиббса при заданной температуре и при 0 К.

Для обеспечения точности вычисления термодинамических функций индивидуального вещества при указанных температурах с ошибкой не выше ~1%, стоградусный интервал, с которым приведены теплоемкости в источнике [1], разбивается на четыре равные части, и проводятся вычисления термодинамических функций и c шагом 25К, что достигается с помощью аппроксимации уравнений.

Выполнение расчетов термодинамических функций индивидуального вещества вышеизложенным образом осуществляется с помощью специальной компьютерной программы.

Значение термодинамических функций C0(T) и C0(T)/T для индивидуального вещества H приведены в таблице 1.

Таблица 1

значение функций С0(Т) и С0(Т)/Т для H.

Т,КС0(Т), Дж/моль*КС0(Т)/Т
10028.1550 0.2816
12527.3679 0.2281
15027.0895 0.1880
17527.1611 0.1585
20027.4470 0.1372
22527.8350 0.1220
25028.2358 0.1111
27528.5837 0.1028
30028.8360 0.0961
32528.9732 0.0901
35028.9993 0.0842
37528.9411 0.0782
40028.8490 0.0721
42528.7965 0.0664
45028.8803 0.0617
47529.2204 0.0599
50029.9600 0.0591

Примечание: С0(Т) – теплоёмкость вещества, рассчитывается при P=const.


Таблица 2.

Значение функций H0(T)-H0(0),S0(T),G0(T)-G0(0) для H.

Т,КН0(Т)-Н0(0), кДж/мольS0(T), Дж/моль*КФ0(Т), Дж/моль*КG0(T)-G0(0), кДж/моль
1002.9990 100.6160 70.6260 -7.06260
2005.7315 120.1235 91.4662 -18.29323
3008.5517 131.4133 102.9076 -30.87229
40011.4462 139.8283 111.2128 -44.48514
50014.3515 146.1412 117.4382 -58.71912

Примечание:

Н0(Т)-Н0(0)—изменение энтальпии;

S0(T)—энтропия; Ф0(Т)—приведённая энергия Гиббса;

G0(T)-G0(0)—изменение энергии Гиббса.

Вывод: При вычислении термодинамических функций с помощью готовых программ мы показали, что ошибка в расчетах не превышает 1 %, в сравнении с приложением А. Из результатов вычислений видно, что, так как функция является возрастающей функцией температуры, то , являются возрастающими функциями температуры, что и следует из законов термодинамики . (графики 1—3).


1.2 История открытия водорода. Выделение горючего газа при взаимодействии кислот и металлов наблюдали в 16 и 17 веках на заре становления химии как науки. Знаменитый английский физик и химик Г. Кавендиш в 1766 г. исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик А. Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 г. осуществил синтез воды, а затем и ее анализ, разложив водяной пар раскаленным железом. Таким образом, он установил, что «горючий воздух» входит в состав воды и может быть из нее получен. В 1787 Лавуазье пришел к выводу, что «горючий воздух» представляет собой простое вещество, и, следовательно, относится к числу химических элементов. Он дал ему название hydrogene (от греческого hydor — вода и gennao — рождаю) — «рождающий воду». Установление состава воды положило конец «теории флогистона». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году. На рубеже 18 и 19 века было установлено, что атом водорода очень легкий (по сравнению с атомами других элементов), и вес (масса) атома водорода был принят за единицу сравнения атомных масс элементов. Массе атома водорода приписали значение, равное 1.

Физические свойства. Газообразный водород может существовать в двух формах (модификациях) — в виде орто- и пара-водорода.

В молекуле ортоводорода (т. пл. −259,20 °C, т. кип. −252,76 °C) ядерные спины направлены одинаково (параллельны), а у параводорода (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны).

Разделить аллотропные формы водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно, что даёт возможность изучить свойства отдельных аллотропных форм. Молекула водорода двухатомна — Н₂. При обычных условиях — это газ без цвета, запаха и вкуса. Водород — самый легкий газ, его плотность во много раз меньше плотности воздуха. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые легкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха. [5]

Атомный номер1
Атомная масса1,00797 а.е.м.
Атомный объём14,4 см3/моль
Электроотрицательность2,2
Атомный радиус0,79 А
Ковалентный радиус0,32 А
Степень окисления+1, иногда -1
Плотность8,988Е-5 г/см3
Теплота распада0,05868 кДж/моль
Температура кипения-252,87 0С
Удельная теплоёмкость14,304 Дж/г*К
Температура плавления-255,34 0С
Температура перехода в сверхпроводящее состояние0 К
Теплопроводность0,1717 Вт/(моль*К) при 273 К
Теплота парообразования0,44936 кДж/моль

Химические свойства. Электронная формула водорода 1s1.Молекулы водорода Н₂ довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия: Н₂=2Н - 432 кДж. Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция: Ca + Н2 = СаН2 и с единственным неметаллом - фтором, образуя фтороводород: F2+H2=2HF. С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении. Он может "отнимать" кислород от некоторых оксидов, например: CuO + Н₂ = Cu + Н₂0. Записанное уравнение отражает реакцию восстановления. Реакциями восстановления называются процессы, в результате которых от соединения отнимается кислород; вещества, отнимающие кислород, называются восстановителями (при этом они сами окисляются). Реакция восстановления противоположна реакции окисления. Обе эти реакции всегда протекают одновременно как один процесс: при окислении (восстановлении) одного вещества обязательно одновременно происходит восстановление (окисление) другого.

N2 + 3H2 → 2NH3

С галогенами образует галогеноводороды:

F2 + H2 → 2HF, реакция протекает со взрывом в темноте и при любой температуре,

Cl2 + H2 → 2HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H2 → CH2 [5]

Распространенность в природе и получение. Водород широко распространён в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. Водород входит в состав самого распространённого вещества на Земле — воды (11,19% водород по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (т. е. в состав белков, нуклеиновых кислот, жиров, углеводов и др.). В свободном состоянии водород встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного водорода (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве водород в виде потока протонов образует внутренний («протонный») радиационный пояс Земли. В космосе водород является самым распространённым элементом. В виде плазмы он составляет около половины массы Солнца и большинства звёзд, основную часть газов межзвёздной среды и газовых туманностей. Водород присутствует в атмосфере ряда планет и в кометах в виде свободного H2, метана CH4, аммиака NH3, воды H2O, радикалов типа CH, NH, OH, SiH, PH и т.д. В виде потока протонов водород входит в состав корпускулярного излучения солнца и космических лучей. Обыкновенный водород состоит из смеси 2 устойчивых изотопов: лёгкого водорода, или протия (1H), и тяжёлого водорода, или дейтерия (2H, или D). В природных соединениях водорода на 1 атом 2H приходится в среднем 6800 атомов 1H. Искусственно получен радиоактивный изотоп — сверхтяжёлый водород, или тритий (3H, или Т), с мягким β-излучением и периодом полураспада T1/2 = 12,262 года. В природе тритий образуется, например, из атмосферного азота под действием нейтронов космических лучей; в атмосфере его ничтожно мало (4·10-15% от общего числа атомов водорода). Получен крайне неустойчивый изотоп 4H. Массовые числа изотопов 1H, 2H, 3H и 4H, соответственно 1,2, 3 и 4, указывают на то, что ядро атома протия содержит только 1 протон, дейтерия — 1 протон и 1 нейтрон, трития — 1 протон и 2 нейтрона, 4H — 1 протон и 3 нейтрона. Большое различие масс изотопов водорода обусловливает более заметное различие их физических и химических свойств, чем в случае изотопов других элементов. Различают лабораторные и промышленные способы получения водорода. В лабораторных условиях в настоящее время применяется: взаимодействие активных металлов с кислотами — неокислителями:

Zn + 2HCl = ZnCl2 + H2

взаимодействие алюминия (или цинка) с водными растворами щелочей:

2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2

В промышленности: электролиз воды и водных растворов щелочей и солей:

2H2O = 2H2+ O2

2NaCl + 2H2O = H2+ Cl+ 2NaOH

пропускание паров воды над раскалённым углём при 1000 0C:

C + H2O = CO + H2

конверсия метана при 900 0C:

CH4 + H2O = CO + 3H2 [6]

Применение. Широкое применение водород нашел в химической промышленности — при синтезе аммиака, изготовления соляной и метиловой кислот, получения метилового спирта. В пищевой промышленности его используют для превращения жидких жиров в твердые (их гидрогенизации). Учитывая «невесомость» водорода, им заполняли и заполняют оболочки летательных аппаратов легче воздуха. Сначала это были воздушные шары, позднее — аэростаты и дирижабли, сегодня (вместе с гелием) — метеорологические зонды. Высокая температура горения, а в сочетании с электрической дугой она достигает 4000 0С, обеспечивает расплав даже самых тугоплавких металлов. Поэтому кислородно-водородные горелки используют для сварки и резки металлов. В цветной металлургии восстановлением водородом получают особо чистые металлы из оксидов. В космической технике отечественная ракета-носитель «Энергия» с успехом использует водород в качестве топлива. Водород используют при синтезе хлороводорода HCl, метанола СН3ОН, при гидрокрекинге (крекинге в атмосфере водорода) природных углеводородов, как восстановитель при получении некоторых металлов. Гидрированием природных растительных масел получают твердый жир — маргарин. Жидкий водород находит применение как ракетное топливо, а также как хладагент.

Одно время высказывалось предположение, что в недалеком будущем основным источником получения энергии станет реакция горения водорода, и водородная энергетика вытеснит традиционные источники получения энергии (уголь, нефть и др.). При этом предполагалось, что для получения водорода в больших масштабах можно будет использовать электролиз воды. Электролиз воды — довольно энергоемкий процесс, и в настоящее время получать водород электролизом в промышленных масштабах невыгодно. Но ожидалось, что электролиз будет основан на использовании среднетемпературной (500-600°C) теплоты, которая в больших количествах возникает при работе атомных электростанций. Эта теплота имеет ограниченное применение, и возможности получения с ее помощью водорода позволили бы решить как проблему экологии (при сгорании водорода на воздухе количество образующихся экологически вредных веществ минимально), так и проблему утилизации среднетемпературной теплоты. Однако после Чернобыльской катастрофы развитие атомной энергетики повсеместно свертывается, так что указанный источник энергии становится недоступным. Поэтому перспективы широкого использования водорода как источника энергии пока сдвигаются, по меньшей мере, до середины 21-го века.

Особенности обращения: водород не ядовит, но при обращении с ним нужно постоянно учитывать его высокую пожаро- и взрывоопасность, причем взрывоопасность водорода повышена из-за высокой способности газа к диффузии даже через некоторые твердые материалы. Перед началом любых операций по нагреванию в атмосфере водорода следует убедиться в его чистоте (при поджигании водорода в перевернутой вверх дном пробирке звук должен быть глухой, а не лающий). [6]

1.3 Расчёт константы равновесия реакции 2MgOкондграф 2Mgконд+СО2в интервале температур 1400 - 2400K, двумя способами, с помощью энтропии и приведенной энергии Гиббса.

Используя справочные данные по температурной зависимости изменения энтальпии реагентов, их энтропии, приведённой энергии Гиббса рассчитываем логарифм константы равновесия lnKp реакции 2MgOкондграф 2Mgконд+СО2, в интервалетемператур 1400 - 2400K[1].

Расчёт производится двумя способами.

1) С использованием абсолютных значений энтропии:

(5)

где ni – соответствующие стехиометрические коэффициенты, S°i(T) – стандартная абсолютная энтропия индивидуального вещества при данной температуре, H0i(T) – H0i(0) – высокотемпературные составляющие энтальпии индивидуального вещества, ∆fH0(0) – стандартная энтальпия образования индивидуального вещества при Т = 0 К [2].

Расчет при температуре 2000 К:

Σ niSio(T) = 2*S0Mg(2000)+ S0CO2(2000)- 2*S0MgO конд(2000)- S0C граф(2000)= 2*99,802+309,193-2*119,027-40,892=229,851 Дж/мольК

Σ ni [Hi0(T)- Hi0(0)+∆fHi0(0)]=2*[HMg0(2000)- HMg0(0)+ ∆fHMg0(0)]+ [HCO20(2000)- HCO20(0)+ ∆fHCO20(0)]- 2*[HMgO0(2000)- HMgO0(0)+ ∆fHMgO0(0)]- [HC0(2000)- HC0(0)+ ∆fHC0(0)]= 2*68,200+100,825-393,142-2*(91,426-597,319)-36,703=819,166 кДж/моль

lnKp==27.65-49.29=-21.63

2) С помощью приведенной энергии Гиббса:

, где (6)

- приведенная энергия Гиббса; - стандартная теплота образования индивидуального вещества при Т=0 К.

Σ ni Фi0 (T)= 2*ФMg0(2000)+ ФCO20(2000)- 2*ФMgO0(2000)- ФC0(2000)= 2*65.703+258.781-2*73.314-22.540=221.019 Дж/мольК

Σ nifHi0(0)= 2*∆fHMg0(0)+ ∆fHCO20(0)- 2*∆fHMgO0(0)- ∆fHC0(0)=

0-393.142+2*597.319-0=801,496 кДж/моль

lnKp==26.6-48.3=-21.63

Аналогично рассчитывается константа равновесия химической реакции и для всех остальных температур из интервала 1400 -2400K; все необходимые данные находятся в таблицах приложений. Полученные результаты для всего интервала температур приведены в таблице 3.

Таблица 3.

Расчет lnKp двумя способами в интервале температур 1400-2400K

T,K1/T, К*106I способ,lnKPI способ,lnKPKp
1400 714-42,85-42,852.45*10-19
1500666-38,09-38,092.86*10-17
1600625-33,97-33,971.76*10-15
1700588-30,34-30,346.66*10-14
1800556-27,11-27,111.68*10-12
1900526-24,22-24,223.03*10-11
2000500-24,63-21,634.04*10-10
2100476-19,28-19,284*10-9
2200455-17,15-17,153.5*10-8
2300435-15,24-15,242.4*10-7
2400417-13,34-13,341.61*10-6

Используя полученный график (рисунок 4) и формулу:

(7)

рассчитаем среднее значение теплового эффекта реакции:

Вывод: Данная реакция является эндотермической, так как с ростом температуры увеличивается константа равновесия и равновесие смещается в сторону прямой реакции.

Вывод основан на принципе Ле – Шателье, который гласит: если на систему, находящуюся в равновесии, воздействовать извне и тем изменить условия, определяющие положение равновесия, то в системе усиливается то из направлений процесса, течение которого ослабляет влияние этого воздействия, в результате чего положение равновесия сместится в этом же направлении. [4]


2.ПОСТРОЕНИЕ И ИССЛЕДОВАНИЕ ДИАГРАММЫ СОСТОЯНИЯ ДВУХКОМПОНЕНТНОЙ СИСТЕМЫ LaSb

2.1 Построение и исследование диаграммы состояния La—Sbв атомных и массовых долях.

2.1.1 Данная диаграмма, изображённая на рисунке 5, является двухкомпонентной системой с полной растворимостью в жидком состоянии, с отсутствием растворимости в твердом состоянии, с образованием одного устойчивого химического соединения конгруэнтного плавления и образованием трех неустойчивых химических соединении инконгруэнтного плавления, с вырожденной эвтектикой.

Фазовый состав:

I (L): жидкий расплав;

II (L + SLa): жидкий расплав + кристаллы твердого р-ра на основе компонента La;

III (L + SLa2Sb): жидкий расплав + кристаллы твердого р-ра на основе компонента La2Sb;

IV (SLa+ SLa2Sb): кристаллы твердого р-ра на основе компонента La + неустойчивое химическое соединение La2Sb;

V (L+SLa3Sb2): жидкий расплав + устойчивое химическое соединение La3Sb2;

VI (L+SLa2Sb3): жидкий расплав + устойчивое химическое соединение La3Sb2;

VII (SLa2Sb+ SLa3Sb2): неустойчивое химическое соединение LaSb3+ устойчивое химическое соединение La2Sb3;

VIII(SLa3Sb2 + SLaSb): неустойчивое химическое соединение LaSb+ устойчивое химическое соединение La3Sb2;

IX (L+ SLaSb): жидкий расплав + неустойчивое химическое соединение LaSb;

X (SLaSb+ SLaSb2): неустойчивое химическое соединение LaSb+ неустойчивое химическое соединение LaSb2;

XI (L+ SLaSb2): жидкий расплав + неустойчивое химическое соединение LaSb2;

XII(SLaSb2 + SSb): кристаллы твердого р-ра на основе компонента Sb + неустойчивое химическое соединение LaSb2.

Точкa эвтектики:

E1:LE1 ↔SLa+ SLa2SbС=0 Ф=3

Переведём в массовые доли точки, соответствующие следующим атомным долям cурьмы: A=0,5 ат.д.; B=0,6 ат.д; C=0,74. Для этого воспользуемся следующеё формулой:

Проведём пересчёт для каждой из точек:

A:

B:

C:

2.1.2На данной диаграмме имеется четыре химических соединения, которые условно обозначили следующим образом:LaxSby , LazSbw , LaaSbb , LacSbd.Индексы при химических элементах соответствуют количеству атомов. А количество атомов, в свою очередь, находится из отношения атомных долей этих элементов. Ниже приведены расчёты этих индексов:

x:y=атомная доля(La):атомная доля(Sb).

LaxSby

x:y=0.33:0.67

x:y=1:2

Отсюда следует, что химическая формула данного химического соединения LaSb2.

Аналогично, находим индексы для химического соединенияLazSbw:

z:w=0.6:0.4

z:w=3:2

Следовательно, химическая формула данного соединения – La3Sb2.

Для химического соединение LaaSbb

a:b=0.5:0.5

a:b=1:1

Данная формула выглядит следующим образом: LaSb

Химическое соединение LacSbd

c:d=0.33:0.67

c:d=1:2

Получили химическое соединение, в котором содержание меди и лантана находится в равных пропорциях – LaSb2.

Скомпонуем полученные результаты: La2Sb, La3Sb2, LaSb,LaSb2.

2.1.3 Температура начала кристаллизации расплава системыLa—Sb, содержащей 0,6 ат.д. Sb, равна »1475°С, температура конца кристаллизации равна 1110°С.

2.1.4 Первые выпавшие кристаллы из расплава, содержащего 0,6 ат. д. Sbнаходятся в виде неустойчивого химического соединения LaSb. Составу последней капли этого расплава соответствует точка перитектики Р3, содержащая 0,74 ат.д. Sb.

2.1.5 Воспользовавшись данными, полученными в пункте 2.1.1, определим по правилу рычага для системы La - Sb, содержащей 0,6 ат.д. Sbпри температуре 12000C и при массе сплава 50г массы равновесных фаз:

mS=mL

mS=mLmS=29,2г

mS+mL=50г mL=20,8г

2.1.6 Число степеней свободы находится по правилу фаз Гиббса: С=К-Ф+1,где С - степень свободы, которая характеризует число независимых параметров, которые можно свободно изменять; Ф - число фаз системы; К - число компонентов системы.

Отсюда следует, что система, у которой:

состав 40 ат. д. Sb, температура 16900С, имеет: К=2, Ф=3, С=2-3+1=0;

состав 20 ат. д.Sb, температура 8000С, имеет: К=2, Ф=2, С=2-2+1=1;

состав 80 ат. д. Sb, температура 14000C, имеет: К=2, Ф=1, С=2-1+1=2.

2.1.7. При температуре, выше 14750C, состав системы La-Sbнаходится в виде расплава, Ф=1, С=2. При охлаждении до температуры 14750C расплав становится насыщенным неустойчивым химическим соединением LaSb, и начинается его кристаллизация. Система становится двухфазной, С=1. При дальнейшем охлаждении до температуры 11100Cрастет масса кристаллов химического соединения LaSb, состав расплава изменяется по кривой MP3, в нем увеличивается содержание сурьмы. Температуре 11100C соответствует точка перитектики P3, отвечающая составу его последних капель, здесь происходит перитектическое превращение:. Кристаллизация расплава заканчивается при температуре 11100C. При температуре ниже 11100C происходит охлаждение механической смеси твердых химических соединений LaSb и LaSb2, Ф=1, С=2.


Приложение А

Зависимость теплоемкости Н2 от температуры

T

1002,999100,61670,62428,155
2005,693119,30190,83627,477
3008,468130,747102,16928,849
40011,426139,104110,53829,181
50014,349145,626116,52729,260

Приложение Б

Значение термодинамических функций для Mg.

T,К

140047.62087.56955.55434.300
150051.05089.93555.90234.300
160054.48092.14958.09934.300
170057.91094.22860.16334.300
180061.34096.18962.11134.300
190064.77098.04363.95434.300
200068.20099.80265.70334.300
210071.630101.47667.36734.300
220075.060103.07268.95434.300
230078.490104.59670.47034.300
240081.920106.05671.92334.300


Приложение В

Значение термодинамических функций для MgO.

T

140058.85699.69657.65652.890
150064.168103.36160.58253.341
160069.524106.81863.36553.793
170074.927110.09366.01854.255
180080.376113.20768.55454.736
190085.875116.18070.98355.243
200091.426119.02773.31455.783
210097.033121.76375.55756.363
2200102.700124.39977.71756.991
2300108.433126.94779.80357.674
2400114.237129.41781.81958.416


Приложение Г

Значение термодинамических функций для CO2

T.К

140065.273288.086241.46257.818
150071.085292.095244.70558.397
160076.950295.880247.78758.898
170082.862299.464250.72259.334
180088.815302.867253.52559.717
190094.804306.105256.20860.054
2000100.825309.193258.78160.354
2100106.874312.144261.25260.622
2200112.948314.970263.63060.862
2300119.045317.680265.92261.080
2400125.163320.284268.13361.278

Приложение Д

Значение термодинамических функций для C.

T.К

140021.96032.13816.45323.919
150024.36733.79917.55424.225
160026.80235.27118.61924.464
170029.25826.85919.64924.543
180031.72938.27220.64524.775
190034.21239.61421.60824.875
200036.70340.89222.54024.957
210039.20342.11223.44425.034
220041.71043.27824.31925.121
230044.22844.39725.16825.231
240046.75845.47425.99125.379

Список литературы.

1. Термодинамические свойства индивидуальных веществ. Т.1-4 книга вторая. Таблицы термодинамических свойств: Справочное издание / Под ред. В.П. Глушкова. – М.: Наука 1979.

2. Методические указания для выполнения курсовой работы по дисциплинам «Физическая химия» и «Химия». /ВГТУ; Сост. В.В. Корнеева, А.А Щетинин, Ю.П. Хухрянский, А.Н. Корнеева, 2002. 24 с.

3. Реми Г.Курс неорганической химии. 11-е издание, выполненное кандидатом химических наук А.И.Григорьевым .Т.1-4-М.:Мир,1972.

4. Коровин Н.В., Общая химия. – М.: Высшая школа, 2007.

5. Интернет. Сайт http://him.1september.ru.

6. Некрасов Б. Водород, Курс общей химии, 14 изд., М., 1962;


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
150199
рейтинг
icon
3155
работ сдано
icon
1367
отзывов
avatar
Математика
Физика
История
icon
145339
рейтинг
icon
5930
работ сдано
icon
2676
отзывов
avatar
Химия
Экономика
Биология
icon
101686
рейтинг
icon
2065
работ сдано
icon
1287
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
57 934 оценки star star star star star
среднее 4.9 из 5
Московский Технический Институт
Работа выполнена на высочайшем уровне, без каких-либо нареканий и раньше срока.
star star star star star
САФУ
Работа выполнена досрочно,замечания исправлены,очень высокий процент оригинальности
star star star star star
ТОГУ
Благодарю автора за качественную работу в короткие сроки! Рекомендую! Спасибо огромное.
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

№ 607-612. Используя табл. 4 и 5 приложения

Решение задач, Химия

Срок сдачи к 22 янв.

1 минуту назад

исследование операций

Контрольная, математика

Срок сдачи к 23 янв.

2 минуты назад

кормление животных

Курсовая, Зоотехния

Срок сдачи к 27 янв.

3 минуты назад

Написать эссе

Эссе, Английский язык

Срок сдачи к 23 янв.

4 минуты назад

Производственная структура на металлургическом предприятии

Реферат, Производственный менеджмент в металлургии

Срок сдачи к 24 янв.

4 минуты назад

Оцените содержание государственной программы Республики Саха (Якутия)

Контрольная, Программно-целевой подход в управлении регионом

Срок сдачи к 24 янв.

6 минут назад

Решить 6 задач по физике

Контрольная, Физика

Срок сдачи к 23 янв.

6 минут назад
6 минут назад
7 минут назад

Срочная помощь на экзамене

Другое, Государственные закупки и антикоррупционная политика, коммерция

Срок сдачи к 21 янв.

11 минут назад

Решить Практическую часть 3 вариант по примеру в письменном...

Контрольная, Общий курс транспорта

Срок сдачи к 23 янв.

11 минут назад

Влияние транссиба на развитие Алтая

Другое, Проектная деятельность

Срок сдачи к 31 янв.

11 минут назад

Построить геокриологический разрез Якутск -Тикси

Чертеж, Подземные воды криолитозоны

Срок сдачи к 22 янв.

11 минут назад

Решить задание

Лабораторная, документоведение

Срок сдачи к 27 янв.

11 минут назад

Исправить ошибки

Курсовая, Схемотехника и АЭУ

Срок сдачи к 24 янв.

11 минут назад

Решить задачу по теме изгиб

Решение задач, теоретическая механика

Срок сдачи к 21 янв.

11 минут назад

решить задачи

Решение задач, дерматология медицина

Срок сдачи к 24 янв.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно