это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
2073602
Ознакомительный фрагмент работы:
Содержание
Введение…………..……………….…………....…………………….… 3
Глава I. Броуновское движение…...................…………………….…….…... 4
1.1 Понятие и закономерности броуновского движения……....…….. 4
1.2 Броуновское движения с точки зрения теории Хаоса……...……. 7
1.3 Броуновское движение как процесс диффузии…...………........… 9
1.4 Интеграция детерминированных фракталов и хаос…………….. 11
Глава II. Неидеальные газы…………………………………………………. 13
2.1 Реальные газы……………………….…………………………….. 13
2.2 Внутренняя энергия реального газа……………………….…….. 14
2.3 Теория неидеальных газов при низких температурах………….. 15
2.4 Фазовые переходы первого и второго рода……………………... 17
Заключение...……………….………..................................................... 21
Список литературы………....……………………………...……...….. 22
Введение
Физика изучает явления, наблюдаемые в реальном мире, и свойства материальных объектов. Эти явления и свойства мы характеризуем с помощью физических величин. Например, движение характеризуется скоростью и ускорением, свойства тел притягивать друг друга характеризуются массой или зарядом. Наблюдаемые нами явления и физические свойства тел возникают вследствие взаимодействия между телами либо между частицами -- атомами и молекулами, из которых состоят материальные тела. В результате этих взаимодействий соответствующие физические величины не остаются постоянными, а испытывают всевозможные изменения. Эти изменения могут происходить как непрерывно, так и скачками, как по величине, так и по направлению. При наблюдении изменений физических величин возникает необходимость в их количественной и качественной оценке. Для этой цели физика использует математические методы.
В данном реферате будет рассмотрено два вопроса:
1. Броуновское движение;
2. Основные положения теории неидеальных газов при низких температурах.
Глава I. Броуновское движение
1.1 Понятие и закономерности броуновского движения
Броуновское движение, правильнее брауновское движение, тепловое движение частиц вещества (размерами в нескольких мкм и менее), находящихся во взвешенном состоянии в жидкости или в газе частиц. Причиной броуновского движения является ряд не скомпенсированных импульсов, которые получает броуновская частица от окружающих ее молекул жидкости или газа. Открыто Р. Броуном (1773 - 1858) в 1827. Видимые только под микроскопом взвешенные частицы движутся независимо друг от друга и описывают сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды. Интенсивность Броуновского движения увеличивается с ростом температуры среды и с уменьшением её вязкости и размеров частиц.
Последовательное объяснение Броуновского движения было дано А. Эйнштейном и М. Смолуховским в 1905-06 на основе молекулярно-кинетической теории. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причём импульсы различных молекул неодинаковы по величине и направлению. Если поверхность частицы, помещенной в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих её молекул, не будут точно компенсироваться. Поэтому в результате "бомбардировки" молекулами броуновская частица приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 1014 раз в сек. При наблюдении Броуновского движения фиксируется (см. Рис. 1) положение частицы через равные промежутки времени. Конечно, между наблюдениями частица движется не прямолинейно, но соединение последовательных положений прямыми линиями даёт условную картину движения.
Рисунок 1 – Броуновское движение частиц гуммигута в воде
Закономерности Броуновского движения служат наглядным подтверждением фундаментальных положений молекулярно-кинетической теории. Общая картина Броуновского движения описывается законом Эйнштейна для среднего квадрата смещения частицы ∆x2 вдоль любого направления х. Если за время между двумя измерениями происходит достаточно большое число столкновений частицы с молекулами, то пропорционально этому времени t:
∆х2=2D (1)
Здесь D - коэффициент диффузии, который определяется сопротивлением, оказываемым вязкой средой движущейся в ней частице. Для сферических частиц радиуса, а он равен:
D=kT/6pha (2)
где к - Больцмана постоянная, Т - абсолютная температура, h - динамическая вязкость среды. Теория Броунского движения объясняет случайные движения частицы действием случайных сил со стороны молекул и сил трения. Случайный характер силы означает, что её действие за интервал времени t1 совершенно не зависит от действия за интервал t2 , если эти интервалы не перекрываются. Средняя за достаточно большое время сила равна нулю, и среднее смещение броуновской частицы Dc также оказывается нулевым. Выводы теории Броуновского движения блестяще согласуются с экспериментом, формулы (1) и (2) были подтверждены измерениями Ж. Перрена и Т. Сведберга (1906). На основе этих соотношений были экспериментально определены постоянная Больцмана и Авогадро число в согласии с их значениями, полученными др. методами. Теория Броуновского движения сыграла важную роль в обосновании статистической механики. Помимо этого, она имеет и практическое значение. Прежде всего, Броуновское движение ограничивает точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха. Законами Броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Диэлектрические потери в диэлектриках объясняются случайными движениями молекул-диполей, составляющих диэлектрик. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.
1.2 Броуновское движения с точки зрения теории Хаоса
Броуновское движение — это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий с наибольшее практическое использование. Случайное Броуновское движение производит частотную диаграмму, которая может быть использована для предсказания вещей, включающих большие количества данных и статистики. Хорошим примером являются цены на шерсть, которые Мандельброт предсказал при помощи Броуновского движения.
Рисунок 2 – Частотная диаграмма
Броуновское движение — это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий с наибольшее практическое использование. Случайное Броуновское движение производит частотную диаграмму, которая может быть использована для предсказания вещей, включающих большие количества данных и статистики. Хорошим примером являются цены на шерсть, которые Мандельброт предсказал при помощи Броуновского движения.
Занося на график случайно Броуновские числа, можно получить Пылевой Фрактал наподобие того, что приведен здесь в качестве примера. Кроме применения Броуновского движения для получения фракталов из фракталов, оно может использоваться и для создания ландшафтов. Во многих фантастических фильмах, как, например Star Trek техника Броуновского движения была использована для создания инопланетных ландшафтов таких, как холмы и топологические картины высокогорных плато.
Эти техники очень эффективны, и их можно найти в книге Мандельброта Фрактальная геометрия природы. Мандельброт использовал Броуновские линии для создания фрактальных линий побережья и карт островов (которые на самом деле были просто в случайном порядке изображенные точки) с высоты птичьего полета.
1.3 Броуновское движение как процесс диффузии
Перемещения частиц при броуновском движении, внешне очень похоже с движением частиц при диффузии – взаимному проникновению молекул разных веществ под действием температуры. Тогда в чем же различие между броуновским движением и диффузией? В действительности, и диффузия и броуновское движение происходят по причине хаотического теплового движения молекул, и как результат описываются похожими математическими правилами.
Разница между ними в том, что при диффузии молекула всегда движется по прямой линии, пока не столкнется с другой молекулой, после чего она изменит траекторию своего движения. Броуновская частица «свободного полета» не совершает, а испытывает очень мелкие и частые как бы «дрожания», вследствие которых она хаотически перемещается то туда, то сюда. Говоря образным языком, броуновская частица подобна пустой банки пива, валяющейся на площади, где собралась большая толпа народу. Люди снуют туда-сюда, задевают банку своими ногами и она летает хаотически в разные стороны подобно броуновской частице. А движение самих людей в толпе уже более характерно для движения частиц при диффузии.
Рисунок 3 – Броуновское движение при диффузии
Если же смотреть на микро уровне, то причиной движения броуновской частицы является ее столкновение с более мелкими частицами, в то время как при диффузии частицы сталкиваются с себе подобными другими частицами.
И диффузия и броуновское движение происходит под действием температуры. С уменьшением температуры, как скорость частиц при броуновском движении, так и скорость движения частиц при диффузии замедляются.
1.4 Интеграция детерминированных фракталов и хаос
Из рассмотренных примеров детерминистских фракталов можно увидеть, что они не проявляют никакого хаотического поведения и что они на самом деле очень даже предсказуемы. Как известно, теория хаоса использует фрактал для того, чтобы воссоздать или найти закономерности с целью предсказания поведения многих систем в природе, таких как, например, проблема миграции птиц.
Теперь давайте посмотрим, как это в действительности происходит. Используя фрактал, называемый Деревом Пифагора, не рассматриваемого здесь (который, кстати, не изобретен Пифагором и никак не связан с теоремой Пифагора) и Броуновского движения (которое хаотично), давайте, попытаемся сделать имитацию реального дерева. Упорядочение листьев и веток на дереве довольно сложно и случайно и, вероятно не является чем-то достаточно простым, что может эмулировать короткая программа из 12 строк.
Рисунок 4 – Упорядочение листьев на дереве
Для начала нужно сгенерировать Дерево Пифагора (слева). Необходимо сделать ствол потолще. На этой стадии Броуновское движение не используется. Вместо этого, каждый отрезок линии теперь стал линией симметрии прямоугольника, который становится стволом, и веток снаружи.
Рисунок 5 – Дерево Пифагора
Но результат все еще выглядит слишком формальным и упорядоченным. Дерево еще не смотрится как живое. Попробуем применить некоторые из тех знаний в области детерминированных фракталов, которые мы только что приобрели.
Рисунок 6 - Результат
Теперь можно использовать Броуновское движение для создания некоторой случайной беспорядочности, которая изменяет числа, округляя их до двух разрядов. В оригинале были использованы 39 разрядные десятичные числа. Результат (слева) не выглядит как дерево. Вместо этого, он выглядит как хитроумный рыболовный крючок.
Может быть, округление до 2 разрядов было слишком уж много? Снова применяем Броуновское движение, округленное на этот раз до 7 разрядов. Результат по-прежнему выглядит как рыболовный крючок, но на этот раз в форме логарифмической спирали!
Рисунок 7 – Броуновское двидениеТак как левая сторона (содержащая все нечетные числа) не производит эффект крючка, случайные беспорядочности, произведенные Броуновским движением применяются дважды ко всем числам с левой стороны и только один раз к числам справа. Может быть этого будет достаточно чтобы исключить или уменьшить эффект логарифмической спирали. Итак, числа округляются до 24 разрядов. На этот раз, результат — приятно выглядящая компьютеризированная хаотическая эмуляция реального дерева.
Глава II. Неидеальные газы
2.1 Реальные газы
Модель идеального газа, используемая в молекулярно-кинетической теории газов, позволяющая описывать поведение разрежённых реальных газов при достаточно высоких температурах и низких давлениях. При выводе уравнения состояния идеального газа размерами молекул и их взаимодействием друг с другом пренебрегают. Повышение давления приводит к уменьшению среднего расстояния между молекулами, поэтому необходимо учитывать объём молекул и взаимодействие между ними. При высоких давлениях и низких температурах указанная модель идеального газа непригодна.
При рассмотрении реальных газов – газов, свойства которых зависят от взаимодействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они проявляются на расстояниях ≤10-9 м. и быстро убывают при увеличении расстояния между молекулами. Такие силы называются короткодействующими.
В ХХ в., по мере развития и представлений о строении атома и квантовой механики, было выяснено, что между молекулами вещества одновременно действуют силы притяжения и силы отталкивания. Силы отталкивания считаются положительными, а силы взаимного притяжения – отрицательными.
2.2 Внутренняя энергия реального газа
Внутренняя энергия реального газа складывается из кинетической энергии теплового движения его молекул и из потенциальной энергии межмолекулярного взаимодействия. Потенциальная энергия реального газа обусловлена только силами притяжения между молекулами. Наличие сил притяжения приводит к возникновению внутреннего давления на газ.
р΄=а/V2 (3)
Работа, которая затрачивается для преодоления сил притяжения, действующих между молекулами газа, или, иными словами, против внутреннего давления, как известно из механики, идёт на увеличение потенциальной энергии системы.
Т.е. dA=p΄Vm=dП, или dП=a/V2m*dVm, откуда П=-а/Vm.
Знак минус означает, что молекулярные силы, создающие внутреннее давление р΄, являются силами притяжения. Учитывая оба слагаемых, получим, что внутренняя энергия моля реального газа Um=CVT-a/Vm растёт с повышением температуры и увеличением объёма.
Если газ расширяется без теплообмена с окружающей средой и не совершает внешней работы, то на основании первого начала термодинамики получим, что U1=U2. Следовательно, при адиабатическом расширении без совершения внешней работы внутренняя энергия газа не изменяется.
2.3 Теория неидеальных газов при низких температурах
Уравнение состояний идеального газа достаточно хорошо описывает поведение реальных газов при не очень высоких температурах и низких давлениях. Однако когда температура и давление таковы, что газ близок к конденсации, то наблюдаются значительные отклонения от законов идеального газа.
Уравнение Ван-дер-Ваальса.
Среди ряда уравнений состояния, предложенных для описания поведения реальных газов, особенно интересно уравнение Ван-дер- Ваальса вследствие его простоты и вследствие того, что оно удовлетворительно описывает поведение многих веществ в широком интервале температур и давлений. Я.Д. Ван-дер-Ваальс вывел своё уравнение из соображений, основанных на кинетической теории, учитывая в качестве первого приближения размеры молекул и силы взаимодействия между ними.
Учёт размера молекул. В модели идеального газа молекулы являются материальными точками и их движению доступен весь объём сосуда. Пусть молекулы представляют собой шарики радиуса г. Любые две молекулы не смогут сблизиться на расстояние, меньшее 2г. Для двух молекул из доступной для их движения области исключается объём шара радиуса 2г. Следовательно, для одной молекулы исключается половина этого объёма:
½*4/3π(2r)3=4*4/3πr3=4Vo (4)
где У0 — объём одной молекулы. Для одного моля газа исключенный объём составляет b=4NAVQ. Движению молекул в объёме одного моля У^ доступен объём (Vo~ V) . Для произвольного количества молей исключенный объём равен Vo. Движению молекул в объёме К доступен объём (V— Vo).
Учёт взаимодействия между молекулами. Если молекула находится вблизи стенки сосуда, то между этой молекулой и стенкой находится меньше молекул, чем в центральной части сосуда. Результирующая сила притяжения, действующая на молекулу, направлена в сторону большего числа молекул, то есть внутрь газа, молекулы притягиваются вглубь сосуда. Давление газа на стенки сосуда возникает в результате столкновений с ними молекул.
Следовательно, из-за сил притяжения молекул давление на стенку уменьшается на величину Ар. Число молекул в пристенном слое пропорционально концентрации п, результирующая сила притяжения зависит от количества молекул, значит, тоже пропорциональна концентрации. Давление уменьшается на величину, пропорциональную произведению числа молекул на результирующую силу притяжения каждой молекулы:
∆p=n2 (5)
Концентрация есть число молекул в единице объёма, т. е. она обратно пропорциональна объёму, поэтому
∆p=1/V2 (6)
Теперь внесём эти поправки в уравнение состояния идеального газа для одного моля pV^ = RT. Выразим давление и учтём, что давление в неидеальном газе уменьшается на величину Vo, а объём — на величину V
p=RT/Vμ-b – a/Vμ (7)
Уравнение Ван-дер-Ваальса для 1 моля вещества таково:
(p+a/Vμ)(Vμ-b)=RT (8)
Константа а, учитывающая взаимодействие между молекулами, выражается в ньютон-метрах в четвёртой степени (Н м4). Размерность константы b, учитывающей размеры молекул, — м3. Константы а и b различны для различных газов, определяются экспериментально. Поэтому уравнение Ван-дер-Ваальса не имеет такого универсального характера, как уравнение состояния идеального газа. Изотермы газа, рассчитанные по уравнению Ван-дер-Ваальса имеют минимум и максимум (рис. 4).
Рисунок 8 – Изотермы газа Ван-дер-Ваальса
2.4 Фазовые переходы первого и второго рода
Фазой называется термодинамически равновесное состояние вещества, отличающееся от других возможных равновесных состояний того же вещества. Если, например, в закрытом сосуде находится вода, то эта система является двухфазной: жидкая фаза – вода и газообразная фаза – смесь воздуха с водяными парами. Если в воду бросить кусочки льда, то эта система станет трёхфазной, в которой лёд является твёрдой фазой.
Часто понятие «фаза» употребляется в смысле агрегатного состояния, однако надо учитывать, что оно шире, чем «агрегатное состояние». В пределах одного агрегатного состояния вещество может находиться в нескольких фазах, отличающихся по своим веществам, составу и строению.
Переход вещества от одной фазы в другую – фазовый переход – всегда связан с качественными изменениями свойств вещества. Примером фазового перехода могут служить изменения агрегатного состояния вещества или переходы, связанные с изменениями в составе, строении и свойствах вещества (например, переход кристаллического вещества из одной модификации в другую).
Различают фазовые переходы двух родов. Фазовый переход первого рода (например, плавление, кристаллизация и т.д.) сопровождается поглощением или выделением вполне определённого количества теплоты, называемой теплотой фазового перехода.
Фазовые переходы первого рода характеризуются постоянством температуры, изменениями энтропии и объёма. Объяснение этому можно дать следующим образом. Например, при плавлении телу нужно сообщить некоторое количество теплоты, чтобы вызвать разрушение кристаллической решётки. Подводимая при плавлении теплота идёт не на нагрев тела, а на разрыв межатомных связей, поэтому плавление протекает при постоянной температуре. При подобных переходах – из более упорядоченного кристаллического состояния в менее упорядоченное жидкое состояние – степень беспорядка увеличивается и, с точки зрения второго начала термодинамики, этот процесс связан с возрастанием энтропии системы. Если переход происходит в обратном направлении (кристаллизация), то система теплоту выделяет. В качестве примера на рисунке 1 показана температурная зависимость свободной энергии F, приходящейся на одну молекулу кристалла, при его превращении в пар. Верхняя ветвь отвечает кристаллическому состоянию, а нижняя ветвь представляет свободную энергию парообразной фазы. При низких температурах свободная энергия кристалла меньше, чем пара, и, следовательно, кристаллическое состояние выгоднее. При высоких температурах, наоборот, выгоднее существование парообразного состояния. Штриховыми линиями показаны области метастабильных, термодинамически неустойчивых состояний системы.
Рисунок 9 – Температурная зависимость свободной энергии F при фазовом переходе первого рода «пар – кристалл»
Поведение внутренней энергии системы, приходящейся на одну молекулу, изображено на рисунке 2. Нижняя ветвь относится к кристаллическому состоянию, а верхняя к парообразному. Скачок энергии в точке перехода представляет собой поглощаемую скрытую теплоту. Соответственно теплоемкость в точке фазового перехода первого рода имеет "всплеск".
Рисунок 9 – Изменение энергии Е в зависимости от температуры Т при фазовом переходе первого рода «пар – кристалл»
При теоретическом описании фазовых переходов первого рода каждую из фаз обычно описывают отдельно. Так, кристаллическую ветвь рассматривают, пользуясь моделью идеального кристалла, т. е. предполагая регулярное расположение всех атомов. Парообразную же ветвь получают, используя модель идеального газа, предполагающую полный беспорядок в системе. Зависимости, полученные для различных моделей, накладывают друг на друга и исследуют, какая из возможностей реализуется в данных условиях. Получить описание фазового перехода первого рода, одновременно учитывая все состояния системы, до настоящего времени не удается из-за огромных математических трудностей.
Фазовые переходы, не связанные с поглощением или выделением теплоты и изменением объёма, называются фазовыми переходами второго рода. Эти переходы характеризуются постоянством объёма и энтропии, но скачкообразным изменением теплоёмкости. Общая трактовка фазовых переходов второго рода предложена советским учёным Л.Д.Ландау (1908-1968). Согласно этой трактовке, фазовые переходы второго рода связаны с изменением симметрии: выше точки перехода система, как правило, обладает более высокой симметрией, чем ниже точки перехода. Примерами фазовых переходов второго рода являются: переход ферромагнитных веществ (железа, никеля) при определённых давлении и температуре в парамагнитное состояние; переход металлов и некоторых сплавов при температуре, близкой к 0К, в сверхпроводящее состояние, характеризуемое скачкообразным уменьшением электрического сопротивления до нуля; превращение обыкновенного жидкого гелия при Т=2,9К в другую жидкую модификацию, обладающую свойствами сверхтекучести.
Заключение
В данном реферате мы рассмотрели два вопроса:
1. Броуновское движение;
2. Основные положения теории неидеальных газов при низких температурах.
Чтобы рассмотреть, как можно подробно, мы так же в реферат включи дополнительные главы, для полного понимания данных тем.
В итоге можно смело сказать, что данная тема реферата была полностью раскрыта и проанализирована.
Список литературы
1. Савельев «Курс общей физики». Учебное пособие для ВТузов. Молекулярная физика. Первый том.;2. И. И. Новиков «Термодинамика.» 1984. – 255 с.;
3. Т.И.Трофимова «Курс общей физики». Молекулярная физика. Лекции.;4. К.В.Глаголев «Физическая термодинамика». Том второй.;5. А.Н.Морозов. МГТУ им. Н.Б.Баумана. 2002. – 315 с.;
6. В.В. Еремин, С.И. Каргов, Н.Е. Кузьменко «Реальные газы.» 1998. – 288 с.;
7. Р.Кубо «Термодинамика.» 1989. – 295 с.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Требуется разобрать ст. 135 Налогового кодекса по составу напогового...
Решение задач, Налоговое право
Срок сдачи к 5 дек.
Школьный кабинет химии и его роль в химико-образовательном процессе
Курсовая, Методика преподавания химии
Срок сдачи к 26 дек.
Реферат по теме «общественное мнение как объект манипулятивного воздействий. интерпретация общественного мнения по п. бурдьё»
Реферат, Социология
Срок сдачи к 9 дек.
Выполнить курсовую работу. Образовательные стандарты и программы. Е-01220
Курсовая, Английский язык
Срок сдачи к 10 дек.
Изложение темы: экзистенциализм. основные идеи с. кьеркегора.
Реферат, Философия
Срок сдачи к 12 дек.
Заполните форму и узнайте цену на индивидуальную работу!