это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
2109952
Ознакомительный фрагмент работы:
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 3
1 Применение лазеров в промышленности 4
2 Применение лазеров в медицине 7
3 Применение лазеров в военном деле 9
4 Применение лазеров в быту и науке 13
ЗАКЛЮЧЕНИЕ 15
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 17
ВВЕДЕНИЕ
Актуальность данной темы определяется следующими факторами.
Во-первых, лазер представляет собой высокотехнологичной
оптическое устройство, имеющее достаточно простое строение и принцип
действия и очень широкое потенциальное применение в различных
областях науки, техники и быта. Поэтому актуально исследование,
направленное на изучение принципа устройства и возможностей
применения лазерной техники.
Во-вторых, несмотря на простоту действия и общего принципа
устройства лазера, в техническом плане создание лазерной техники
требует применения высокоточных технологий, тщательного определения
различных групп параметров лазера, подбора параметров компонентов
лазера в зависимости от вида применения лазера. В связи с этим актуально
исследование теоретических и практических основ определения
параметров лазера.
Степень изученности. В разработке данной темы были использованы
работы таких авторов как: Белов Г.В., Бондарев Б.В., Квасников И.А.,
Кудинов В.А., Кузнецов С.И., Лабскер Л.Г., Мирам А.О., Морачевский
А.Г., Сивухин Д.В., Хохрин С.Н. и др.
Таким образом, объект исследования: лазерная техника.
Предмет исследования: особенности применения и определения
параметров лазерной техники.
Цель исследования: выявить основные особенности применения и
определения параметров лазерной техники.
Задачи исследования: выявить возможности применения лазерной
техники в различных областях быта, хозяйства, науки и техники;
Структура работы определяется задачами, стоящими перед
исследованием.
1 Применение лазеров в промышленности
Уникальные свойства лазерного излучения сделали квантовые
генераторы незаменимым инструментом в самых разных областях науки и
техники.
В промышленности лазеры используются для резки, сварки и пайки
деталей из различных материалов. Высокая температура излучения
позволяет сваривать материалы, которые невозможно сварить обычными
способами (к примеру, керамику и металл). Луч лазера может быть
сфокусирован в точку диаметром порядка микрона, что позволяет
использовать его в микроэлектронике (так называемое лазерное
скрайбирование).
Лазеры используются для получения поверхностных покрытий
материалов (лазерное легирование, лазерная наплавка, вакуумно-лазерное
напыление) с целью повышения их износостойкости. Широкое
применение получила также лазерная маркировка промышленных
образцов и гравировка изделий из различных материалов. При лазерной
обработке материалов на них не оказывается механическое воздействие,
поэтому возникают лишь незначительные деформации. Кроме того, весь
технологический процесс может быть полностью автоматизирован.
Лазерная обработка потому характеризуется высокой точностью и
производительностью [3]. Полупроводниковый лазер применяется,
например, в узле генерации изображения принтера Hewlett-Packard.
Идеально прямой лазерный луч служит удобной «линейкой». В
геодезии и строительстве импульсные лазеры применяют для измерения
расстояний на местности, рассчитывая их по времени движения светового
импульса между двумя точками. Точные измерения в промышленности
производят при помощи интерференции лазерных лучей, отраженных от
концевых поверхностей изделия.
Все компьютерные микропроцессоры изготавливаются на
кремниевой подложке методом фотолитографии: свет, проходя через
шаблон с рисунком схемы, формирует негатив этого рисунка на пластине,
закладывая сплетение межсоединений. Увеличивая частоту колебаний
световой волны, т. е. переходя от зеленого света к синему, а потом и к
ультрафиолетовому, инженеры уменьшают ширину линии рисунка, т. е.
сокращают размеры интегральных схем.
Дж. Дж. Макклеланд со своими коллегами из Национального
института стандартов и технологии (США) применил этот метод, чтобы
изготовить решетку из хромированных точек на маленькой кремниевой
пластине. Размер точки - всего 80 нм - значительно меньше разрешающей
способности, обеспечиваемой ультрафиолетовыми лучами. Физики
уверены, что с дальнейшим развитием этой технологии можно будет на
площади в 1 см 2 всего за несколько минут разместить 2 млрд.
интегральных схем [11].
Секрет заключается в использовании в качестве линзы лазерного
луча. Плотный узкий пучок атомов хрома, получаемый при нагревании
навески хрома в СВЧ-печи, пропускают сквозь пучок лазерного излучения,
частота которого близка к частоте собственных колебаний атомов хрома. В
результате атомы теряют энергию, т. е. охлаждаются. Непосредственно
перед кремниевой подложкой эти атомы попадают в еще один лазерный
пучок - примерно той же частоты, что и первый. Будучи отраженным от
зеркала, этот пучок образует стоячую волну, т. е. волну, пучности и узлы
которой фиксированы в пространстве.
Натолкнувшись на такую стоячую волну, атомы хрома вынуждены
двигаться либо вверх, к гребню волны, либо вниз, к узлу между гребнями.
Таким образом, волна играет роль линзы, отклоняя проходящие сквозь нее
атомы от прямой траектории на половину длины волны и выстраивая их в
аккуратные линии на поверхности кремниевой пластины. Если пластину
осветить двумя взаимноперпендикулярными лазерными пучками, как это
сделал Макклеланд, линии превратятся в правильную совокупность точек -
решетку. Следующий шаг - сканирование лазером поверхности для
создания произвольного рисунка интегральных наносхем.
В технологии позиционирования атомов фокусированным лазерным
лучом - такое название физики закрепили за новой технологией -
предстоит разрешить немало проблем, прежде чем она появится в
заводских цехах. Например, не все атомы фокусируются. Вероятно, будет
невозможно стравливать материал, не разрушая рисунка соединений. Но,
поскольку теоретически при помощи этой технологии можно создавать
схемы с шириной линии рисунка в 10 раз меньшей, чем сегодняшние, она,
в конце концов, получит дальнейшее развитие [4].
2 Применение лазеров в медицине
Лазерная техника широко применяется и в хирургии, и в терапии.
Лазерным лучом, введенным через глазной зрачок, «приваривают»
отслоившуюся сетчатку и исправляют дефекты глазного дна.
Хирургические операции, производимые «лазерным скальпелем» меньше
травмируют живые ткани. А лазерное излучение малой мощности ускоряет
заживление ран и оказывает воздействие, аналогичное иглоукалыванию,
практикуемому восточной медициной (лазерная акупунктура) [5].
Развитие лазерной медицины идет по трем основным ветвям:
лазерная хирургия, лазерная терапия и лазерная диагностика. Уникальные
свойства лазерного луча позволяют выполнять ранее невозможные
операции новыми эффективными и минимально инвазивными методами.
Растет интерес к немедикаментозным методам лечения, включая
физиотерапию. Нередко возникают ситуации, когда необходимо проводить
не одну физиопроцедуру, а несколько, и тогда пациенту приходиться
переходить из одной кабины в другую, несколько раз одеваться и
раздеваться, что создает дополнительные проблемы и потерю времени.
Многообразие методик терапевтического воздействия требует
применения лазеров с различными параметрами излучения. Для этих целей
служат различные излучающие головки, которые содержат один или
несколько лазеров и электронное устройство сопряжения сигналов
управления от базового блока с лазером.
Излучающие головки подразделяются на универсальные,
позволяющие использовать их как наружно, (с использованием зеркальных
и магнитных насадок), так и внутриполостно с использованием
специальных оптических насадок; матричные, имеющие большую
площадь излучения и применяющиеся поверхностно, а также
специализированные. Различные оптические насадки позволяют доставлять
излучение к требуемой зоне воздействия.
Блочный принцип позволяет применять широкий спектр лазерных и
светодиодных головок, обладающих различными спектральными,
пространственно-временными и энергетическими характеристиками, что, в
свою очередь, поднимает на качественно новый уровень эффективность
лечения за счет сочетанной реализации различных методик лазерной
терапии. Эффективность лечения определяется прежде всего
эффективными методиками и аппаратурой, которая обеспечивает их
реализацию. Современные методики требуют возможность выбора
различных параметров воздействия (режим излучения, длина волны,
мощность) в широком диапазоне. Аппарат лазерной терапии (АЛТ) должен
обеспечивать эти параметры, их достоверный контроль и отображение и
вместе с тем быть простым и удобным в управлении [7].
3 Применение лазеров в военном деле
Военное применение лазеров включает как их использование для
обнаружения целей и связи, так и применение в качестве оружия.
Лучами мощных химических и эксимерных лазеров наземного или
орбитального базирования планируется разрушать или выводить из строя
боевые спутники и самолеты противника. Созданы образцы лазерных
пистолетов для вооружения экипажей орбитальных станций военного
назначения [2].
К настоящему времени сложилась основные направления, по
которым идет внедрение лазерной техники в военное дело. Этими
направлениями являются:
1. Лазерная локация (наземная, бортовая, подводная).
2. Лазерная связь.
3. Лазерные навигационные системы.
Сейчас, получены такие параметры излучения лазеров, которые
способны существенно повысить тактико-технические данные различных
образцов военной аппаратуры (стабильность частоты порядка 10 -14 ,
пиковая мощность 10 -12 Вт, мощность непрерывного излучения 10 4 Вт,
угловой раствор луча 10 -6 рад, t = 10 -12 с, длина волны 0,2...20 мкм.
Лазерной локацией называют область оптикоэлектроники,
занимающегося обнаружением и определением местоположения
различных объектов при помощи электромагнитных волн оптического
диапазона, излучаемого лазерами. Объектами лазерной локации могут
быть танки, корабли, ракеты, спутники, промышленные и военные
сооружения. Принципиально лазерная локация осуществляется активным
методом. Нам уже известно, что лазерное излучение отличается от
температурного тем, что оно является узконаправленным,
монохраматичным, имеет большую импульсивную мощность и высокую
спектральную яркость. Все это делает оптическую локацию
конкурентноспособной в сравнении с радиолокаций, особенно при ее
использовании в космосе (где нет поглощающего воздействия
атмосферы) и под водой (где для ряда волн оптического диапазона
существуют окна прозрачности).
В основе лазерной локации, так же как и радиолокации, лежат три
основных свойства электромагнитных волн [10]:
1. Способность отражаться от объектов. Цель и фон, на котором
она расположена, по-разному отражают упавшее на них излучение.
Лазерное излучение отражается от всех предметов: металлических и
неметаллических, от леса, пашни, воды. Более того, оно отражается от
любых объектов, размеры которых меньше длины волны, лучше, чем
радиоволны. Это хорошо известно из основной закономерности
отражения, по которой следует, что чем короче длина волны, тем лучше
она отражается. Мощность отраженного в этом случае излучения обратно
пропорциональна длине волны в четвертой степени. Лазерному локатору
принципиально присуща и большая обнаружительная способность, чем
радиолокатору - чем, короче волна, тем она выше. Поэтому-то
проявлялась по мере развития радиолокации тенденция перехода от
длинных волн к более коротким.
Создание лазеров открыло новые перспективы в технике локации.
2. Способность распространяться прямолинейно. Использование
узконаправленного лазерного луча, которым производиться просмотр
пространства, позволяет определить направление на объект (пеленг
цели).
Это направление находят по расположению оси оптической
системы, формирующей лазерное излучение (в радиолокации - по
направлению антенны). Чем уже луч, тем с большей точностью может
быть определен пеленг.
Угловой раствор луча лазера, изготовленного с использованием
твердотельного активного вещества, как известно, составляет всего 1,0 -
1,5 градуса и при этом без дополнительных оптических фокусирующих
систем (антенн). Следовательно, габариты лазерного локатора могут быть
значительно меньше, чем аналогического радиолокатора. Использование
же незначительных по габаритам оптических систем позволит сузить луч
лазера до нескольких угловых минут, если в этом возникнет
необходимость.
3. Способность лазерного излучения распространяться с постоянной
скоростью дает возможность определять дальность до объекта.
Потенциальная точность измерения дальности определяется
точностью измерения времени прохождения импульса энергии до
объекта и обратно. Совершенно ясно, что чем, короче импульс, тем
лучше (при наличии хорошей полосы пропускания, как говорят радисты).
Но нам уже известно, что самой физикой лазерного излучения заложена
возможность получения импульсов с длительностью 10 -7 -10 -8 с. Это
обеспечивает хорошие данные лазерному локатору.
Рассмотрим параметры лазерного локатора.
Прежде всего зона действия. Под ней понимают область
пространства, в которой ведется наблюдение. Ее границы обусловлены
максимальной и минимальной дальности действия и пределами обзора по
углу места и азимуту. Эти размеры определяются назначением военного
лазерного локатора.
Другим параметром локатора является время обзора. Под ним
понимается время, в течение которого лазерный луч приводит
однократный обзор заданного объема пространства.
Следующим параметром локатора являются определяемые
координаты, которые зависят от назначения локатора. Если он
предназначен для определения местонахождения наземных и надводных
объектов, то достаточно измерять две координаты: дальность и азимут.
При наблюдении за воздушными объектами нужны три координаты. Эти
координаты следует определять с заданной точностью, которая зависит
от систематических и случайных ошибок [6].
Под разрешающей способностью понимается возможность
раздельного определения координат близко расположенных целей.
Каждой координате соответствует своя разрешающая способность. Кроме
того, используется такая характеристика, как помехозащищенность. Это
способность лазерного локатора работать в условиях естественных
(Солнце, Луна) и искусственных помех [9].
И еще одной важной характеристикой локатора является
надежность. Это свойство локатора сохранять свои характеристики и
установленных пределах в заданных условиях эксплуатации.
4 Применение лазеров в быту и науке
Появление лазеров произвело переворот в технике связи и записи
информации. Существует простая закономерность: чем выше несущая
частота (меньше длина волны) канала связи, тем больше его пропускная
способность. Именно поэтому радиосвязь, вначале освоившая диапазон
длинных волн, постепенно переходила на все более короткие длины
волн. Но свет – такая же электромагнитная волна, как и радиоволны,
только в десятки тысяч раз короче, поэтому по лазерному лучу можно
передать в десятки тысяч раз больше информации, чем по
высокочастотному радиоканалу. Лазерная связь осуществляется по
оптическому волокну – тонким стеклянным нитям, свет в которых за
счет полного внутреннего отражения распространяется практически без
потерь на многие сотни километров. Лазерным лучом записывают и
воспроизводят изображение (в том числе движущееся) и звук на компакт-
дисках.
Лазеры активно применяются в научных исследованиях.
Чрезвычайно высокая температура излучения и высокая плотность его
энергии дает возможность исследовать вещество в экстремальном
состоянии, существующем только в недрах горячих звезд. Делаются
попытки осуществить термоядерную реакцию, сжимая ампулу со смесью
дейтерия с тритием системой лазерных лучей (т.н. инерционный
термоядерный синтез). В генной инженерии и нанотехнологии
(технологии, имеющей дело с объектами с характерными размерами 10 –9
м) лазерными лучами разрезают, передвигают и соединяют фрагменты
генов, биологических молекул и детали размером порядка миллионной
доли миллиметра (10 –9 м). Лазерные локаторы (лидары) применяются для
исследования атмосферы [8].
Лазеры применяются в голографии для создания самих голограмм и
получения гологафического объёмного изображения. Некоторые лазеры,
например, лазеры на красителях, способны генерировать
монохроматический свет практически любой длины волны, при этом
импульсы излучения могут достигать 10−16 с, а следовательно и
огромных мощностей (так называемые гигантские импульсы). Эти
свойства используются в спектроскопии, а также при изучении
нелинейных оптических эффектов. С использованием лазера удалось
измерить расстояние до Луны с точностью до нескольких сантиметров.
Лазерная локация космических объектов уточнила значение
астрономической постоянной и способствовала уточнению систем
космической навигации, расширила представления о строении атмосферы
и поверхности планет Солнечной системы. В астрономических
телескопах, снабженных адаптивной оптической системой коррекции
атмосферных искажений, лазер применяют для создания искусственных
опорных звезд в верхних слоях атмосферы.
Сверхкороткие импульсы лазерного излучения используются в
лазерной химии для запуска и анализа химических реакций. Здесь
лазерное излучение позволяет обеспечить точную локализацию,
дозированность, абсолютную стерильность и высокую скорость ввода
энергии в систему. В настоящее время разрабатываются различные
системы лазерного охлаждения, рассматриваются возможности
осуществления с помощью лазеров управляемого термоядерного
синтеза(самым подходящим лазером для исследований в области
термоядерных реакций, был бы лазер, использующий длины волн,
лежащие в голубой части видимого спектра). Лазеры используются и в
военных целях, например, в качестве средств наведения и прицеливания.
Рассматриваются варианты создания на основе мощных лазеров боевых
систем защиты воздушного, морского и наземного базирования [8].
ЗАКЛЮЧЕНИЕ
Лазерное оборудование сегодня широко пошло в нашу жизнь. Доля
энергии, употребляемой индустриально развитыми странами в форме
лазерного луча, бистро растет — настолько быстро, что у экспертов
появились основания говорить о начале третьей промышленной
революции. Лазеры, выйдя за стены лабораторий, находят широчайшее
применение практически во всех отраслях экономики, и число лазерных
методик и технологий постоянно растет. Вспомним, какую важную роль
играют сегодня систем и оптоволоконной связи, ставшие основой
мировой сети телекоммуникации, Интернета и даже современной
банковской системы, обеспечивающей клиенту мгновенный доступ к
своему счету из любой точки мира, позволяющей использовать
пластиковые карты вместо наличных, и так далее. Миллионы владельцев
оптических дисков пользуются системами записи, хранения и считывания
информации, подчас и не подозревая об их «лазерной» сущности. Вся
современная электронная аппаратура изготавливается с массовым
использованием лазерных технологий обработки и контроля, а одна из
таких технологий — лазерная фотолитография — напрямую определяет
плотность упаковки элементов в чипах, в кубиках, из которых строится
электронная схема, и соответственно определяет компактность этой
техники.
Лазерный раскрой металлического листа, точечная и шовная сварка,
маркировка, модифицирование поверхностного слоя металла и другие
лазерные технологии быстро осваиваются машиностроительными и
приборостроительными заводами, обеспечивая им высокую
производительность и гибкость производства, экономию материальных и
энергетических ресурсов, возможность использования новых
конструкционных материалов.
В медицине лазерная аппаратура давно стала применяться очень
широко, и количество используемых врачами методов диагностики и
лечения заболеваний с помощью лазерного луча продолжает
стремительно увеличиваться. Фотодинамическая и фототермическая
терапия, коррекция зрения, косметологические и пластические операции,
термопластика хрящевых тканей, диагностика капиллярного кровотока —
только немногие примеры новых лазерных технологий в медицине.
Японские специалисты прогнозируют, что к 2005 году каждая третья
медицинская процедура будет проводиться с использованием лазера.
Перечень областей применений лазерного луча в наши дни был бы
не полон, если бы мы не вспомнили полиграфию с ее лазерными
принтерами и настольными печатными машинами, экологический
мониторинг с помощью лидаров и диодных спектроанализаторов,
навигацию, использующую лазерные гироскопы, маяки и локаторы. На
службе пауки примеры использования лазеров просто не сосчитать:
лазерный луч и препарирует клетку, и создает экстремально плотную
плазму, и измеряет скорость дрейфа материков... Вот почему объем
производства лазерной техники в мире стабильно увеличивается на
15—20% в год.
К сожалению, сегодня в России лазерные технологии используются
недостаточно. Сегодня отечественные лазерщики предлагают более трех
тысяч моделей лазерного оборудования, в России производятся лазерные
источники излучения, приборы и установки практически всех известных
в мире типов. Российский лазерный экспорт составляет, по разным
оценкам, от 30 до 50 миллионов долларов в год и постоянно растет. А
вот внутренний спрос очень невелик. Внедрение лазерных технологий не
отвечает ни нашим реальным потребностям, ни реальным возможностям.
Не последнюю роль здесь играет слабая информированность
пользователей. Очень многие из них уверены, что хорошая лазерная
техника производится только за рубежом.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Белов Г.В. Термодинамика в 2 ч. Часть 2: Учебник и практикум для
академического бакалавриата / Г.В. Белов. - Люберцы: Юрайт, 2016. -
248 c.
2. Бондарев Б.В. Курс общей физики. Книга 3: Термодинамика,
статистическая физика, строение вещества: Учебник для бакалавров /
Б.В. Бондарев, Н.П. Калашников, Г.Г. Спирин. - Люберцы: Юрайт, 2016.
- 369 c.
3. Квасников И.А. Термодинамика и статистическая физика. Т.2: Теория
равновесных систем: Статистическая физика / И.А. Квасников. - М.:
УРСС, 2016. - 432 c.
4. Кудинов В.А. Техническая термодинамика и теплопередача: Учебник
для академического бакалавриата / В.А. Кудинов, Э.М. Карташов, Е.В.
Стефанюк. - Люберцы: Юрайт, 2016. - 442 c.
5. Кузнецов С.И. Курс физики с примерами решения задач. Часть I.
Механика. Молекулярная физика. Термодинамика / С.И. Кузнецов. -
СПб.: Лань, 2014. - 464 c.
6. Лабскер Л.Г. Основы физики. Молекулярная физика. Термодинамика:
Учебное пособие / Л.Г. Лабскер. - М.: КноРус, 2013. - 192 c.
7. Мирам А.О. Техническая термодинамика. Тепломассообмен: Учебное
издание / А.О. Мирам, В.А. Павленко. - М.: АСВ, 2016. - 352 c.
8. Морачевский А.Г. Физическая химия. Термодинамика химических
реакций: Учебное пособие / А.Г. Морачевский, Е.Г. Фирсова. - СПб.:
Лань, 2015. - 112 c.
9. Сивухин Д.В. Общий курс физики. В 5 т. Т. 2. Термодинамика и
молекулярная физика / Д.В. Сивухин. - М.: Физматлит, 2014. - 544 c.
10. Тельцов Л.П. Термодинамика: Учебное пособие / Л.П. Тельцов, О.Т.
Муллакаев, В.В. Яглов. - СПб.: Лань П, 2016. - 592 c.
11. Хохрин С.Н. Физическая химия. Термодинамика химических реакций:
Учебное пособие / С.Н. Хохрин, К.А. Рожков, И.В. Лунегова. - СПб.:
Лань, 2015. - 112 c.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Выполнить курсовой по Транспортной логистике. С-07082
Курсовая, Транспортная логистика
Срок сдачи к 14 дек.
Роль волонтеров в мероприятиях туристской направленности
Курсовая, Координация работы служб туризма и гостеприимства
Срок сдачи к 13 дек.
Контрольная работа
Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления
Срок сдачи к 30 дек.
Написать курсовую по теме: Нематериальные активы и их роль в деятельности предприятия.
Курсовая, Экономика организации
Срок сдачи к 14 дек.
написать доклад на тему: Процесс планирования персонала проекта.
Доклад, Управение проектами
Срок сдачи к 13 дек.
Заполните форму и узнайте цену на индивидуальную работу!