это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
2204053
200 руб.
Ознакомительный фрагмент работы:
Содержание
Введение 3
1. Работы предшественников А. М. Бутлерова 4
2. Личностные качества А. М. Бутлерова 6
3. Основные положения теории строения химических соединений 7
4. Основные направления развития теории строения химических соединений и ее значение 14
Заключение 18
Список использованных источников 20
Введение
Ко времени создания А. М. Бутлеровым теории химического строения органических веществ (1861 г.) были известны многие десятки и сотни тысяч органических соединений.
Возникновение органической химии как самостоятельной науки можно отнести к 1807 г., когда известный шведский химик Й. Берцелиус впервые ввел термины «органическая химия» и «органические вещества». До этого времени вещества классифицировали по источнику их получения и поэтому еще в XVIII в. различали три химии: «растительную», «животную» и «минеральную».
В конце XVIII в. французский химик А. Лавуазье показал, что вещества, получаемые из организмов растений и животных (отсюда их название — органические вещества), содержат, в отличие от минеральных, лишь немногие элементы: углерод, водород, кислород, азот, а иногда фосфор и серу. Так как углерод обязательно присутствует во всех органических соединениях, то органическую химию по предложению А. Кекуле с середины XIX в. стали называть химией соединений углерода.
Позднее немецкий химик К. Шорлеммер дал более точное определение этой науки: органическая химия — это химия углеводородов и их производных (то есть соединений, которые могут быть получены на основе углеводородов).
1. Работы предшественников А. М. Бутлерова
1. Введение французскими химиками Л. Гитоном де Морво и А. Лавуазье термина «радикал» и истолкование органической химии как химии сложных радикалов (Ж. Дюма и Ф. Велер).
В 20—30-х гг. XX в. прошлого столетия сформировалась теория радикалов (Й. Берцелиус, Ю. Либих, Ж. Дюма), явившаяся одной из первых попыток объяснить природу органических веществ. Считалось, что органические вещества построены из радикалов — групп атомов, без изменения переходящих из одного соединения в другое при химических реакциях. Радикалы рассматривали как «подлинные элементы органической химии» и считали их устойчивость постоянным свойством. Такие представления могут быть оценены как односторонние, хотя их признают и в настоящее время, когда доказано существование органических радикалов как промежуточных частиц, возникающих в ходе химических реакций. Этим не исчерпывается многообразная природа органических веществ и их превращений.
2. Создание теории типов французскими химиками Ж. Дюма, Ш. Жераром и О. Лораном (1848—1853), согласно которой органические вещества рассматривают как производные простейших неорганических веществ: водорода, хлороводорода, воды (рис. 1).
Рисунок 1. Типы производных водорода, хлороводорода и воды
Такие формулы несколько похожи на современные. Но сторонники теории типов не считали их отражающими реальное строение веществ и писали множество различных формул одного соединения в зависимости от химических реакций, которые пытались записать с помощью этих формул. Строение молекул они считали принципиально непознаваемым, что наносило вред развитию науки.
3. Введение Й. Берцелиусом в 1830 г. термина «изомерия» для явления существования веществ одинакового состава, обладающих различными свойствами.
4. Успехи в синтезе органических соединений, в результате которых было развеяно учение о витализме, то есть о «жизненной силе», под влиянием которой якобы в организме живых существ образуются органические вещества:
• в 1828 г. Ф. Велер из неорганического вещества (цианата аммония) синтезировал мочевину;
• в 1842 г. русский химик Н. Н. Зинин получил анилин;
• в 1845 г. немецкий химик А. Кольбе синтезировал уксусную кислоту;
• в 1854 г. французский химик М. Бертло синтезировал жиры, и, наконец,
• в 1861 г. сам А. М. Бутлеров синтезировал сахароподобное вещество.
5. В середине XVIII в. химия становится более строгой наукой. В результате работ Э. Франкланда и А. Кекуле утвердилось понятие о валентности атомов химических элементов. Кекуле развил представление о четырехвалентности углерода. Благодаря трудам Канниццаро четче стали понятия об атомных и молекулярных массах, уточнены их значения и способы определения.
В 1860 г. более 140 ведущих химиков из разных стран Европы собрались на международный конгресс в г. Карлсруэ. Конгресс стал очень важным событием в истории химии: были обобщены успехи науки и подготовлены условия для нового этапа в развитии органической химии — появления теории химического строения органических веществ А. М. Бутлерова (1861 г.), а также для фундаментального открытия Д. И. Менделеева — Периодического закона и системы химических элементов (1869 г.).
В 1861 г. А. М. Бутлеров выступил на съезде врачей и естествоиспытателей в г. Шпейере с докладом «О химическом строении тел». В нем он изложил основы разработанной им теории химического строения органических соединений. Под химическим строением ученый понимал порядок соединения атомов в молекулах.
2. Личностные качества А. М. Бутлерова
А. М. Бутлерова (рис. 2) отличали энциклопедичность химических знаний, умение анализировать и обобщать факты, прогнозировать. Он предсказал существование изомера бутана, а затем получил его, равно как изомер бутилена — изобутилен.
Рисунок 2. Бутлеров Александр Михайлович (1828—1886)
Русский химик, академик Петербургской АН (с 1874 г.). Окончил Казанский университет (1849 г.). Работал там же (с 1857 г. — профессор, в 1860 и 1863 гг. — ректор). Создатель теории химического строения органических соединений, лежащей в основе современной химии. Обосновал идею о взаимном влиянии атомов в молекуле. Предсказал и объяснил изомерию многих органических соединений. Написал «Введение к полному изучению органической химии» (1864 г.) — первое в истории науки руководство, основанное на теории химического строения. Председатель Отделения химии Русского физико-химического общества (1878—1882).
А. М. Бутлеров создал первую в России школу химиков-органиков, из которой вышли блестящие ученые: В. В. Марковников, Д. П. Коновалов, А. Е. Фаворский и др.
Недаром Д. И. Менделеев писал: «А. М. Бутлеров — один из величайших русских ученых, он русский и по ученому образованию, и по оригинальности трудов».
3. Основные положения теории строения химических соединений
Теория химического строения органических соединений, выдвинутая А. М. Бутлеровым во второй половине прошлого века (1861 г.), была подтверждена работами многих ученых, в том числе учениками Бутлерова и им самим. Стало возможным на ее основе объяснить многие явления, до той поры не имевшие толкования: изомерию, гомологию, проявление атомами углерода четырехвалентности в органических веществах. Теория выполнила и свою прогностическую функцию: на ее основе ученые предсказывали существование неизвестных еще соединений, описывали свойства и открывали их.
Так, в 1862—1864 гг. А. М. Бутлеров рассмотрел изомерию пропиловых, бутиловых и амиловых спиртов, определил число возможных изомеров и вывел формулы этих веществ. Существование их позднее было экспериментально доказано, причем некоторые из изомеров синтезировал сам Бутлеров.
В течение XX в. положения теории химического строения химических соединений были развиты на основе новых воззрений, распространившихся в науке: теории строения атома, теории химической связи, представлений о механизмах химических реакций. В настоящее время эта теория имеет универсальный характер, то есть справедлива не только для органических веществ, но и для неорганических.
Первое положение. Атомы в молекулах соединяются в определенном порядке в соответствии с их валентностью. Углерод во всех органических и в большинстве неорганических соединений четырехвалентен.
Очевидно, что последнюю часть первого положения теории легко объяснить тем, что в соединениях атомы углерода находятся в возбужденном состоянии (рис. 3).
Рисунок 3. Переход углерода из основного состояния в возбужденное
а) атомы четырехвалентного углерода могут соединяться друг с другом, образуя различные цепи:
- открытые разветвленные
- открытые неразветвленные
- замкнутые
б) порядок соединения атомов углерода в молекулах может быть различным и зависит от вида ковалентной химической связи между атомами углерода — одинарной или кратной (двойной и тройной).
Второе положение. Свойства веществ зависят не только от их качественного и количественного состава, но и от строения их молекул.
Это положение объясняет явление изомерии. Вещества, имеющие одинаковый состав, но разное химическое или пространственное строение, а следовательно, и разные свойства, называют изомерами. Основные виды изомерии:
Структурная изомерия, при которой вещества различаются порядком связи атомов в молекулах:
1) изомерия углеродного скелета (рис. 4);
Рисунок 4. Изомерия углеродного скелета
2) изомерия положения (рис. 5);
Рисунок 5. Изомерия положения: а - кратных связей; б - заместителей; в - функциональных групп
3) изомерия гомологических рядов (рис. 6).
Рисунок 6. Межклассовая изомерия
Пространственная изомерия, при которой молекулы веществ отличаются не порядком связи атомов, а положением их в пространстве: цис-транс-изомерия (геометрическая).
Эта изомерия характерна для веществ, молекулы которых имеют плоское строение: алкенов, циклоалканов и др.
К пространственной изомерии относится и оптическая (зеркальная) изомерия.
Четыре одинарные связи вокруг атома углерода, как вы уже знаете, расположены тетраэдрически. Если атом углерода связан с четырьмя различными атомами или группами, то возможно разное расположение этих групп в пространстве, то есть две пространственные изомерные формы.
Две зеркальные формы аминокислоты аланина (2-аминопропановой кислоты) изображены на рисунке 7.
Рисунок 7. Зеркальные молекулы аланина
Представьте себе, что молекулу аланина поместили перед зеркалом. Группа —NH2 находится ближе к зеркалу, поэтому в отражении она будет впереди, а группа —СООН — на заднем плане и т. д. (см. изображение справа). Алании существует в двух пространственных формах, которые при наложении не совмещаются одна с другой.
Универсальность второго положения теории строения химических соединений подтверждает существование неорганических изомеров.
Так, первый из синтезов органических веществ — синтез мочевины, проведенный Велером (1828 г.), показал, что изомерны неорганическое вещество — цианат аммония и органическое — мочевина (рис. 8).
Рисунок 8. Молекулы цианата аммония и мочевины
Если заменить атом кислорода в мочевине на атом серы, то получится тиомочевина, которая изомерна роданиду аммония, хорошо известному вам реактиву на ионы Fе3+. Очевидно, что тиомочевина не дает этой качественной реакции.
Третье положение. Свойства веществ зависят от взаимного влияния атомов в молекулах.
Например, в уксусной кислоте в реакцию со щелочью вступает только один из четырех атомов водорода. На основании этого можно предположить, что только один атом водорода связан с кислородом (рис. 9).
Рисунок 9. Реакция уксусной кислоты со щелочью
С другой стороны, из структурной формулы уксусной кислоты можно сделать вывод о наличии в ней одного подвижного атома водорода, то есть о ее одноосновности.
Чтобы убедиться в универсальности положения теории строения о зависимости свойств веществ от взаимного влияния атомов в молекулах, которое существует не только у органических, но и у неорганических соединений, сравним свойства атомов водорода в водородных соединениях неметаллов. Они имеют молекулярное строение и в обычных условиях представляют собой газы или летучие жидкости. В зависимости от положения неметалла в Периодической системе Д. И. Менделеева можно выявить закономерность в изменении свойств таких соединений (рис. 10).
Рисунок 10. Закономерность в изменении свойств
Метан не взаимодействует с водой. Отсутствие основных свойств у метана объясняется насыщенностью валентных возможностей атома углерода.
Аммиак проявляет основные свойства. Его молекула способна присоединять к себе ион водорода за счет его притяжения к неподеленной электронной паре атома азота (донорно-акцепторный механизм образования связи).
У фосфина РН3 основные свойства слабо выражены, что связано с радиусом атома фосфора. Он значительно больше радиуса атома азота, поэтому атом фосфора слабее притягивает к себе атом водорода.
В периодах слева направо увеличиваются заряды ядер атомов, уменьшаются радиусы атомов, увеличивается сила отталкивания атома водорода с частичным положительным зарядом, а потому кислотные свойства водородных соединений неметаллов усиливаются.
В главных подгруппах сверху вниз увеличиваются радиусы атомов элементов, атомы неметаллов с 5- слабее притягивают атомы водорода с 5+, уменьшается прочность водородных соединений, они легко диссоциируют, а потому их кислотные свойства усиливаются.
Различная способность водородных соединений неметаллов к отщеплению или присоединению катионов водорода в растворах объясняется неодинаковым влиянием, которое оказывает атом неметалла на атомы водорода.
Различным влиянием атомов в молекулах гидроксидов, образованных элементами одного периода, объясняется также изменение их кислотно-основных свойств.
Основные свойства гидроксидов убывают, а кислотные усиливаются, так как увеличивается степень окисления центрального атома, следовательно, растет энергия связи его с атомом кислорода (8-) и отталкивание им атома водорода (8+).
Гидроксид натрия NаОН. Так как у атома водорода радиус очень мал, его сильнее притягивает к себе атом кислорода и связь между атомами водорода и кислорода будет более прочной, чем между атомами натрия и кислорода. Гидроксид алюминия Аl(OH)3 проявляет амфотерные свойства.
В хлорной кислоте НСlO4 атом хлора с относительно большим положительным зарядом прочнее связан с атомом кислорода и сильнее отталкивает от себя атом водорода с 6+. Диссоциация происходит по кислотному типу.
4. Основные направления развития теории строения химических соединений и ее значение
Во времена А. М. Бутлерова в органической химии широко использовали эмпирические (молекулярные) и структурные формулы. Последние отражают порядок соединения атомов в молекуле согласно их валентности, которая обозначается черточками.
Для простоты записи часто используют сокращенные структурные формулы, в которых черточками обозначают только связи между атомами углерода или углерода и кислорода (рис. 11).
Рисунок 11. Сокращенные структурные формулы
Затем, по мере развития знаний о природе химической связи и о влиянии электронного строения молекул органических веществ на их свойства, стали пользоваться электронными формулами, в которых ковалентную связь условно обозначают двумя точками. В таких формулах часто показывают направление смещения электронных пар в молекуле.
Именно электронным строением веществ объясняют мезомерный и индукционный эффекты.
Индукционный эффект — смещение электронных пар гамма-связей от одного атома к другому вследствие их разной электроотрицательности. Обозначается (—>).
Индукционный эффект атома (или группы атомов) отрицательный (-/), если этот атом имеет большую электроотрицательность (галогены, кислород, азот), притягивает к себе электроны гамма-связи и приобретает при этом частичный отрицательный заряд. Атом (или группа атомов) имеет положительный индукционный эффект (+/), если он отталкивает электроны гамма-связей. Этим свойством обладают некоторые предельные радикалы С2H5). Вспомните правило Марковникова о том, как присоединяется к алкенам (пропену) водород и галоген галогеноводорода и вы поймете, что это правило носит частный характер. Сравним эти два примера уравнений реакций (рис. 12).
В таблице 1 приведены основные виды влияния атомов в молекулах органических веществ.
Рисунок 12. Применение правила Морковникова
Таблица 1. Взаимное влияние атомов в молекулах органических веществ
В молекулах отдельных веществ проявляются и индукционный, и мезомерный эффекты одновременно. В этом случае они или усиливают друг друга (в альдегидах, карбоновых кислотах), или взаимно ослабляются (в хлорвиниле).
Результатом взаимного влияния атомов в молекулах является перераспределение электронной плотности.
Идею о пространственном направлении химических связей впервые высказали французский химик Ж. А. Ле Бель и голландский химик Я. X. Вант-Гофф в 1874 г. Предположения ученых полностью подтвердила квантовая химия. На свойства веществ значительное влияние оказывает пространственное строение их молекул. Например, мы уже приводили формулы цис- и трансизомеров бутена-2, которые отличаются по своим свойствам.
Средняя энергия связи, которую необходимо разорвать при переходе одной формы в другую, равна примерно 270 кДж/моль; такого большого количества энергии при комнатной температуре нет. Для взаимного перехода форм бутена-2 из одной в другую необходимо одну ковалентную связь разорвать и взамен образовать другую. Иными словами, этот процесс — пример химической реакции, а обе рассмотренные формы бутена-2 представляют собой различные химические соединения.
Вы, очевидно, помните, что важнейшей проблемой при синтезе каучука было получение каучука стереорегулярного строения. Необходимо было создать такой полимер, в котором структурные звенья располагались бы в строгом порядке (натуральный каучук, например, состоит только из цис-звеньев), ведь от этого зависит такое важнейшее свойство каучука, как его эластичность.
Современная органическая химия различает два основных типа изомерии: структурную (изомерию цепи, изомерию положения кратных связей, изомерию гомологических рядов, изомерию положения функциональных групп) и стереоизоме-рию (геометрическую, или цис-транс-изомерию, оптическую, или зеркальную, изомерию).
Заключение
Итак, мы смогли убедиться в том, что второе положение теории химического строения, четко сформулированное А. М. Бутлеровым, было неполным. С современных позиций это положение требует дополнения:
свойства веществ зависят не только от их качественного и количественного состава, но и от их:
• химического,
• электронного,
• пространственного строения.
Создание теории строения веществ сыграло важнейшую роль в развитии органической химии. Из науки преимущественно описательной она превращается в науку созидательную, синтезирующую, появилась возможность судить о взаимном влиянии атомов в молекулах различных веществ (см. табл. 10). Теория строения создала предпосылки для объяснения и прогнозирования различных видов изомерии органических молекул, а также направлений и механизмов протекания химических реакций.
На основе этой теории химики-органики создают вещества, которые не только заменяют природные, но по своим свойствам значительно их превосходят. Так, синтетические красители гораздо лучше и дешевле многих природных, например известных в древности ализарина и индиго. В больших количествах производят синтетические каучуки с самыми разнообразными свойствами. Широкое применение находят пластмассы и волокна, изделия из которых используют в технике, быту, медицине, сельском хозяйстве.
Значение теории химического строения А. М. Бутлерова для органической химии можно сравнить со значением Периодического закона и Периодической системы химических элементов Д. И. Менделеева для неорганической химии. Недаром в обеих теориях так много общего в путях их становления, направлениях развития и общенаучном значении. Впрочем, в истории любой другой ведущей научной теории (теории Ч. Дарвина, генетике, квантовой теории и т. д.) можно найти такие общие этапы.
Список использованных источников
Основная литература:
1. Коровин Н. В. Общая химия: учебник для студентов вузов, обучающихся по техническим направлениям и специальностям / Н. В. Коровин Москва: Высшая школа, 2010. – 496 с.
2. Соколов В. Н. Химия: конспект лекций / В. Н. Соколов Екатеринбург: УрГУПС, 2015. – 117 с.
3. Потапов А. Д. Экология: Учебник / А. Д Потапов. – Москва: ИНФРА-М, 2015. – 528 с.
4. Разумов В. А. Экология: Учебное пособие / В. А. Разумов Москва: ИНФРА-М, 2014. – 296 с.
5. Потапов А. Д. Экология: Учебник / А. Д. Потапов. Москва: ООО "Научно-издательский центр ИНФРА-М", 2015. – 263 с.
6. Луканин А.В. Инженерная экология: процессы и аппараты очистки газовоздушных выбросов: Учебное пособие Москва: ООО "Научноиздательский центр ИНФРА-М", 2015. – 524 с.
7. Гарин В. М. Промышленная экология: учебник / В. М. Гарин, И. А. Кленова. Москва: ФГБУ ДПО "Учеб.-метод. центр по образованию на ж.-д. трансп.", 2012. – 328 с.
Дополнительная литература
1. Глинка Н. Л. Общая химия: Учебное пособие / Н. Л. Глинка – М.: Интеграл-пресс, 2008. – 727 с.
2. Глинка Н.Л Задачи и упражнения по общей химии: учебное пособие для студентов вузов нехимических специальностей / Н. Л. Глинка, В. А. Рабинович Москва: Интеграл-Пресс, 2008. – 263 с.
3. Коровин Н. В. Общая химия. Теория и задачи: учебное пособие / Н. В. Коровин, Н. В. Кулешов. Санкт-Петербург: Лань, 2014. – 492 с.
4. Медведев В.Т. Инженерная экология: Учеб. для вузов / В.Т. Медведев. Москва: Гардарики, 2002. – 687 с.
5. Бондаренко В. В. Общая экология : учебное пособие / В. В. Бондаренко – 16 Екатеринбург : УрГУПС, 2004. – 168 с.
6. Рыбаков Ю. С. Экология: курс лекций / Ю. С.Рыбаков, Н. В. Лугаськова – Екатеринбург: УрГУПС, 2005. – 122 с.
7. Иванов Н.И. Инженерная экология и экологический менеджмент: Учебник / Н. И. Иванов. Москва: Логос, 2006. – 527 с.
8. Сидоров Ю.П. Практическая экология на железнодорожном транспорте: Учебное пособие / Ю. П. Сидоров, Т.В. Гаранина. Москва: УМЦ ЖДТ, 2013. – 228 с.
Интернет-источники:
1. Издательско-библиотечный комплекс УрГУПС - [http://www.usurt.ru/izdatelsko-bibliotechnyy-kompleks/ibk-urgups/];
2. Электронная библиотека учебных материалов по химии МГУ - [http://www.chem.msu.su/rus/elibrary/];
3. Сайт с полезной информацией и таблицами по химии - [http://www.xumuk.ru/];
4. Сайт с полезной информацией и таблицами по химии - [http://www.alhimikov.net/].
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Заполните форму и узнайте цену на индивидуальную работу!